Araştırma Makalesi
BibTex RIS Kaynak Göster

On some new sequence spaces

Yıl 2018, Cilt: 20 Sayı: 3, 154 - 162, 29.10.2018
https://doi.org/10.25092/baunfbed.487747

Öz

In this paper, we investigate some new sequence spaces which arise from the notation of generalized de la Vallée-Poussin means and introduce the spaces of strongly λ- invariant summable sequences which happen to be complete paranormed spaces under certain conditions.

Kaynakça

  • Banach, S., Theorie des Operations Lineaires, (1932).
  • Duran, J.P., Infinite matrices and almost convergence, Math. Z., 128, 75-83, (1972).
  • Hamilton, H.J. and Hill, J. D., On strong summability, Amer. J. Math., 60, 588-94, (1938).
  • Kuttner, B., Note on strong summability, J. London Math. Soc., 21, 118-22, (1946).
  • King, J.P., Almost summable sequences, Proc. Amer. Math. Soc., 17, 1219-25, (1966).
  • Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math., 80, 167-190, (1948).
  • Maddox, I.J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., (2)18, 345-55, (1967).
  • Maddox, I.J., Elements of Functional Analysis, Cambridge University Press, (1970).
  • Malkowsky, E. and Savaş, E., Some -sequence spaces defined by a modulus, Archivum Math., 36(3), 219-228, (2000).
  • Mursaleen, M., Matrix transformation between some new sequence spaces, Houston J. Math., 9, 505–509, (1993),.
  • Mursaleen, M., On some new invariant matrix methods of summability, Q.J. Math., 34, 77-86, (1983).
  • Nanda, S., Some sequence spaces and almost convergence, J. Austral. Math. Soc. (Series A), 22, 446-455, (1976).
  • Savaş, E., Some sequence spaces involving invariant means, Indian J. Math., 31, (1989).
  • Savaş, E., A note on some sequence spaces, Doğa Türk. J. Math., 15, (1991).
  • Savaş, E., Invariant means and generalization of a theorem of S. Mishra, Doga Türk. J. Math., 14, (1989).
  • Savaş, E., Invariant coregular and conull matrices of operators, Hacettepe Bull. Math. Sci. and Eng., 19, (1990).
  • Savaş, E., Infinite matrices and generalized almost convergence, Doga Türk. J. Math., 5(3), 1-10, (1987).
  • Saraswat, S.K. and Gupta, S.K., Spaces of strongly -summable sequences, Bull. Cal. Math. Soc., 75, 179-184, (1983).
  • Schaefer, P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36, 104–110, (1972).

Bazı yeni dizi uzayları üzerine

Yıl 2018, Cilt: 20 Sayı: 3, 154 - 162, 29.10.2018
https://doi.org/10.25092/baunfbed.487747

Öz

Bu makalede, genelleştirilmiş de la Vallée-Poussin ortalamalarından ortaya çıkan bazı yeni dizi uzayları incelenmiş ve belirli koşullar altında tam paranormlu uzay olan kuvvetli λ-değişmez toplanabilir dizi uzayları tanıtılmıştır.

Kaynakça

  • Banach, S., Theorie des Operations Lineaires, (1932).
  • Duran, J.P., Infinite matrices and almost convergence, Math. Z., 128, 75-83, (1972).
  • Hamilton, H.J. and Hill, J. D., On strong summability, Amer. J. Math., 60, 588-94, (1938).
  • Kuttner, B., Note on strong summability, J. London Math. Soc., 21, 118-22, (1946).
  • King, J.P., Almost summable sequences, Proc. Amer. Math. Soc., 17, 1219-25, (1966).
  • Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math., 80, 167-190, (1948).
  • Maddox, I.J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., (2)18, 345-55, (1967).
  • Maddox, I.J., Elements of Functional Analysis, Cambridge University Press, (1970).
  • Malkowsky, E. and Savaş, E., Some -sequence spaces defined by a modulus, Archivum Math., 36(3), 219-228, (2000).
  • Mursaleen, M., Matrix transformation between some new sequence spaces, Houston J. Math., 9, 505–509, (1993),.
  • Mursaleen, M., On some new invariant matrix methods of summability, Q.J. Math., 34, 77-86, (1983).
  • Nanda, S., Some sequence spaces and almost convergence, J. Austral. Math. Soc. (Series A), 22, 446-455, (1976).
  • Savaş, E., Some sequence spaces involving invariant means, Indian J. Math., 31, (1989).
  • Savaş, E., A note on some sequence spaces, Doğa Türk. J. Math., 15, (1991).
  • Savaş, E., Invariant means and generalization of a theorem of S. Mishra, Doga Türk. J. Math., 14, (1989).
  • Savaş, E., Invariant coregular and conull matrices of operators, Hacettepe Bull. Math. Sci. and Eng., 19, (1990).
  • Savaş, E., Infinite matrices and generalized almost convergence, Doga Türk. J. Math., 5(3), 1-10, (1987).
  • Saraswat, S.K. and Gupta, S.K., Spaces of strongly -summable sequences, Bull. Cal. Math. Soc., 75, 179-184, (1983).
  • Schaefer, P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36, 104–110, (1972).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Ekrem Savaş

Yayımlanma Tarihi 29 Ekim 2018
Gönderilme Tarihi 4 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 3

Kaynak Göster

APA Savaş, E. (2018). On some new sequence spaces. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 154-162. https://doi.org/10.25092/baunfbed.487747
AMA Savaş E. On some new sequence spaces. BAUN Fen. Bil. Enst. Dergisi. Ekim 2018;20(3):154-162. doi:10.25092/baunfbed.487747
Chicago Savaş, Ekrem. “On Some New Sequence Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 3 (Ekim 2018): 154-62. https://doi.org/10.25092/baunfbed.487747.
EndNote Savaş E (01 Ekim 2018) On some new sequence spaces. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 154–162.
IEEE E. Savaş, “On some new sequence spaces”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 3, ss. 154–162, 2018, doi: 10.25092/baunfbed.487747.
ISNAD Savaş, Ekrem. “On Some New Sequence Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (Ekim 2018), 154-162. https://doi.org/10.25092/baunfbed.487747.
JAMA Savaş E. On some new sequence spaces. BAUN Fen. Bil. Enst. Dergisi. 2018;20:154–162.
MLA Savaş, Ekrem. “On Some New Sequence Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 3, 2018, ss. 154-62, doi:10.25092/baunfbed.487747.
Vancouver Savaş E. On some new sequence spaces. BAUN Fen. Bil. Enst. Dergisi. 2018;20(3):154-62.