Araştırma Makalesi
BibTex RIS Kaynak Göster

Ağırlıklı lorentz uzaylarında steklov ortalaması yardımıyla konvolüsyonlar üzerine bir çalışma

Yıl 2022, Cilt: 24 Sayı: 1, 281 - 288, 05.01.2022
https://doi.org/10.25092/baunfbed.971335

Öz

Bu çalışmada, ağırlıklı Lorentz uzaylarında Steklov operatörü yardımıyla tanımlanan konvolüsyon tipli operatörlerin bazı değerlendirmeleri elde edildi. Ayrıca, bu uzaylarda, konvolüsyon tipli operatörlerin bazı temel özellikleri incelendi.

Kaynakça

  • Lorentz, G. G., Some new functional spaces, Annals of Mathematics, 51, 37-55, (1950).
  • Bennet, B., and Sharpley, R., Interpolation of operators, Academic Press, Boston MA, (1968).
  • Genebashvili, I., Gogatishvili, A., Kokilashvili, V. M. and Krbec, M., Weight theory for integral transforms on spaces of homogeneous type, 92, CRC Press, USA, (1997).
  • Muckenhoupt, B., Weighted Norm Inequalities for the Hardy Maximal Function, Transactions of the American Mathematical Society, 165, 207-226, (1972).
  • Cruz-Uribe, D.V. and Fiorenza, A., Variable Lebesgue spaces: Foundations and Harmonic Analysis, Springer Science-Business Media, (2013).
  • Chang, H. M., Hunt, R. A. and Kurtz, D. S., The Hardy-Littlewood maximal functions on L(p;q) spaces with weights, Indiana University Mathematics Journal, 31, 109-120, (1982).
  • Israfilov, D. M., and Yırtıcı, E., On some properties of convolutions in variable exponent Lebesgue spaces, Complex Analysis and Operator Theory, 11 (8), 1817-1824, (2017).
  • Akgün R., Yildirir Y. E., Jackson-Stechkin type inequalities in weighted Lorentz spaces, Mathematical Inequalities and Applications, 18 (4), 1283.1293, (2015).
  • Kokilashvili, V. M. and Krbec, M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing, (1991).
  • Kokilashvili, V.M., and Yıldırır, Y. E., On the approximation by trigonometric polynomials in weighted Lorentz spaces, Journal of Function Spaces and Applications, 8 (1), 67-86, (2010).
  • Akgün, R., and Yildirir, Y.E., Improved direct and converse theorems in weighted Lorentz spaces, Bulletin of the Belgian Mathematical Society-Simon Stevin, 23 (2), 247-262, (2016).
  • Yildirir, Y.E., and Doğu, A., Convolution and approximation in weighted Lorentz spaces, Journal of Mathematical Analysis, 7 (5), 54-60, (2016).
  • Yildirir, Y.E., and Israfilov, D.M., The properties of convolution type operators in weighted Orlicz spaces, Glasnik matematički, 45 (2), 461-474, (2010).
  • Doğu, A., Avşar, A. H., and Yildirir, Y.E., Some inequalities about convolution and trigonometric approximation in weighted Orlicz spaces, Proceeding of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan, 44 (1), 107-115, (2018).
  • Akgün, R., and Yildirir, Y.E., Convolution and Jackson inequalities in Musielak--Orlicz spaces, Turkish Journal of Mathematics, 42 (5), 2166-2185, (2018).
  • Edwards, R. E., Fourier Series: A Modern Introduction Volume 2, 85, Springer Science & Business Media, (2012).

A study on convolutions in weighted lorentz spaces using steklov means

Yıl 2022, Cilt: 24 Sayı: 1, 281 - 288, 05.01.2022
https://doi.org/10.25092/baunfbed.971335

Öz

In this study, some estimations of convolution type operators defined with the help of Steklov operator in weighted Lorentz space L_ω^(p,q) (T) are obtained. Also, some basic properties of convolution type operators in these spaces are investigated.

Kaynakça

  • Lorentz, G. G., Some new functional spaces, Annals of Mathematics, 51, 37-55, (1950).
  • Bennet, B., and Sharpley, R., Interpolation of operators, Academic Press, Boston MA, (1968).
  • Genebashvili, I., Gogatishvili, A., Kokilashvili, V. M. and Krbec, M., Weight theory for integral transforms on spaces of homogeneous type, 92, CRC Press, USA, (1997).
  • Muckenhoupt, B., Weighted Norm Inequalities for the Hardy Maximal Function, Transactions of the American Mathematical Society, 165, 207-226, (1972).
  • Cruz-Uribe, D.V. and Fiorenza, A., Variable Lebesgue spaces: Foundations and Harmonic Analysis, Springer Science-Business Media, (2013).
  • Chang, H. M., Hunt, R. A. and Kurtz, D. S., The Hardy-Littlewood maximal functions on L(p;q) spaces with weights, Indiana University Mathematics Journal, 31, 109-120, (1982).
  • Israfilov, D. M., and Yırtıcı, E., On some properties of convolutions in variable exponent Lebesgue spaces, Complex Analysis and Operator Theory, 11 (8), 1817-1824, (2017).
  • Akgün R., Yildirir Y. E., Jackson-Stechkin type inequalities in weighted Lorentz spaces, Mathematical Inequalities and Applications, 18 (4), 1283.1293, (2015).
  • Kokilashvili, V. M. and Krbec, M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing, (1991).
  • Kokilashvili, V.M., and Yıldırır, Y. E., On the approximation by trigonometric polynomials in weighted Lorentz spaces, Journal of Function Spaces and Applications, 8 (1), 67-86, (2010).
  • Akgün, R., and Yildirir, Y.E., Improved direct and converse theorems in weighted Lorentz spaces, Bulletin of the Belgian Mathematical Society-Simon Stevin, 23 (2), 247-262, (2016).
  • Yildirir, Y.E., and Doğu, A., Convolution and approximation in weighted Lorentz spaces, Journal of Mathematical Analysis, 7 (5), 54-60, (2016).
  • Yildirir, Y.E., and Israfilov, D.M., The properties of convolution type operators in weighted Orlicz spaces, Glasnik matematički, 45 (2), 461-474, (2010).
  • Doğu, A., Avşar, A. H., and Yildirir, Y.E., Some inequalities about convolution and trigonometric approximation in weighted Orlicz spaces, Proceeding of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan, 44 (1), 107-115, (2018).
  • Akgün, R., and Yildirir, Y.E., Convolution and Jackson inequalities in Musielak--Orlicz spaces, Turkish Journal of Mathematics, 42 (5), 2166-2185, (2018).
  • Edwards, R. E., Fourier Series: A Modern Introduction Volume 2, 85, Springer Science & Business Media, (2012).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Hamdi Avşar 0000-0001-7277-1152

Yayımlanma Tarihi 5 Ocak 2022
Gönderilme Tarihi 14 Temmuz 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 1

Kaynak Göster

APA Avşar, A. H. (2022). A study on convolutions in weighted lorentz spaces using steklov means. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 281-288. https://doi.org/10.25092/baunfbed.971335
AMA Avşar AH. A study on convolutions in weighted lorentz spaces using steklov means. BAUN Fen. Bil. Enst. Dergisi. Ocak 2022;24(1):281-288. doi:10.25092/baunfbed.971335
Chicago Avşar, Ahmet Hamdi. “A Study on Convolutions in Weighted Lorentz Spaces Using Steklov Means”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 1 (Ocak 2022): 281-88. https://doi.org/10.25092/baunfbed.971335.
EndNote Avşar AH (01 Ocak 2022) A study on convolutions in weighted lorentz spaces using steklov means. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 281–288.
IEEE A. H. Avşar, “A study on convolutions in weighted lorentz spaces using steklov means”, BAUN Fen. Bil. Enst. Dergisi, c. 24, sy. 1, ss. 281–288, 2022, doi: 10.25092/baunfbed.971335.
ISNAD Avşar, Ahmet Hamdi. “A Study on Convolutions in Weighted Lorentz Spaces Using Steklov Means”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (Ocak 2022), 281-288. https://doi.org/10.25092/baunfbed.971335.
JAMA Avşar AH. A study on convolutions in weighted lorentz spaces using steklov means. BAUN Fen. Bil. Enst. Dergisi. 2022;24:281–288.
MLA Avşar, Ahmet Hamdi. “A Study on Convolutions in Weighted Lorentz Spaces Using Steklov Means”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 1, 2022, ss. 281-8, doi:10.25092/baunfbed.971335.
Vancouver Avşar AH. A study on convolutions in weighted lorentz spaces using steklov means. BAUN Fen. Bil. Enst. Dergisi. 2022;24(1):281-8.