Araştırma Makalesi
BibTex RIS Kaynak Göster

New presentations of real numbers with k-Lucas numbers

Yıl 2023, Cilt: 25 Sayı: 1, 31 - 36, 16.01.2023
https://doi.org/10.25092/baunfbed.972697

Öz

In this paper, we first obtain a series of k-Lucas numbers using k-Lucas numbers. We give new presentations of any real number u ≠ 0 using this obtained k-Lucas series and show polynominal repsesentations that every nonzero real number can be uniquely represented as the sum of the squares of consecutive k-Lucas numbers. To do this, we give new presentation theorems for any real number using k-Lucas series. Finally, to support these theorems, we give examples where we obtain the roots of the polynomial representations of a selected real number u ≠ 0, as well as the values representing the first ten prime numbers corresponding to a chosen k-Lucas polynomial.

Kaynakça

  • Falcon, S. and Plaza, A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32, 5, 1615-24, (2007).
  • Falcon, S. and Plaza, A., The k-Fibonacci sequence and the pascal 2-tringle, Chaos, Solitons and Fractals, 33, 1, 38-49, (2007).
  • Kocer E. G., Tuglu N. and Stakhov A., On the m-extension of the Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals 40, 4, 1890-1906, (2007).
  • Halıcı, S. and Akyüz, Z., Fibonacci and Lucas sequences at negative indices. Konuralp Journal of Mathematics, 4, 1, 172-178, (2016).
  • Stakhov, A. and Rozin, B., Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals, 27, 5, 1162-1177, (2006).
  • Şiar, Z. and Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42, 3, 211-222, (2013).
  • Hoggatt, V.E., Generalized Zeckendorf Theorem, The Fibonacci Quarterly, 10, 1, 89-93, (1972).
  • Özgür, N.Y. and Uçar, S., New presentations for real numbers, Mathematical Sciences And Applications E-Notes, 3, 1, 13-17, (2015).
  • Falcon, S., On the k-Lucas numbers, International Journal of Contemporary Mathematical Sciences, 6, 21, 1039-1050, (2011).
  • Falcon, S., On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematics and Computer Sciences, 3, 425-434, (2012).
  • Özgür, N. Y. and Kaymak, Ö., On determination of k-Fibonacci and k-Lucas numbers, Mathematical Science and Applications E-Notes, 3, 2, 2, 20-26, (2015).
  • Chan, H. H. and Cooper, S., Rational Analogues of Ramanujan s series for 1/π, Mathematical Proceedings of the Cambridge Philosophical Society, 153, 2, 361-383, (2012).

Reel sayıların k-Lucas sayıları ile yeni temsilleri

Yıl 2023, Cilt: 25 Sayı: 1, 31 - 36, 16.01.2023
https://doi.org/10.25092/baunfbed.972697

Öz

Bu çalışmada, ilk önce k-Lucas sayıların özelliklerini kullanarak k-Lucas sayılarının bir serisini elde ediyoruz. Daha sonra elde ettiğimiz bu k-Lucas serisini kullanarak herhangi bir u ≠ 0 reel sayısının yeni temsillerini elde ediyor ve her reel sayının ardışık k-Lucas sayılarının karelerinin toplamı olarak bir tek şekilde temsil edilebilir olduklarına yönelik polinom temsillerini gösteriyoruz. Bunu yapmak için k-Lucas serisini kullanarak herhangi bir reel sayı için yeni temsil teoremleri veriyoruz. Son olarak ise bu teoremleri desteklemek amacıyla seçilen özel bir u ≠ 0 gerçek sayısının polinom temsillerinin köklerini ve ayrıca seçilen bir k-Lucas polinomuna karşılık gelen ilk on asal sayıyı temsil eden değerlerini elde ettiğimiz örnekler veriyoruz.

Kaynakça

  • Falcon, S. and Plaza, A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32, 5, 1615-24, (2007).
  • Falcon, S. and Plaza, A., The k-Fibonacci sequence and the pascal 2-tringle, Chaos, Solitons and Fractals, 33, 1, 38-49, (2007).
  • Kocer E. G., Tuglu N. and Stakhov A., On the m-extension of the Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals 40, 4, 1890-1906, (2007).
  • Halıcı, S. and Akyüz, Z., Fibonacci and Lucas sequences at negative indices. Konuralp Journal of Mathematics, 4, 1, 172-178, (2016).
  • Stakhov, A. and Rozin, B., Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals, 27, 5, 1162-1177, (2006).
  • Şiar, Z. and Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42, 3, 211-222, (2013).
  • Hoggatt, V.E., Generalized Zeckendorf Theorem, The Fibonacci Quarterly, 10, 1, 89-93, (1972).
  • Özgür, N.Y. and Uçar, S., New presentations for real numbers, Mathematical Sciences And Applications E-Notes, 3, 1, 13-17, (2015).
  • Falcon, S., On the k-Lucas numbers, International Journal of Contemporary Mathematical Sciences, 6, 21, 1039-1050, (2011).
  • Falcon, S., On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematics and Computer Sciences, 3, 425-434, (2012).
  • Özgür, N. Y. and Kaymak, Ö., On determination of k-Fibonacci and k-Lucas numbers, Mathematical Science and Applications E-Notes, 3, 2, 2, 20-26, (2015).
  • Chan, H. H. and Cooper, S., Rational Analogues of Ramanujan s series for 1/π, Mathematical Proceedings of the Cambridge Philosophical Society, 153, 2, 361-383, (2012).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Yusuf Doğru 0000-0002-1875-0243

Yayımlanma Tarihi 16 Ocak 2023
Gönderilme Tarihi 24 Ağustos 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 1

Kaynak Göster

APA Doğru, Y. (2023). New presentations of real numbers with k-Lucas numbers. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 31-36. https://doi.org/10.25092/baunfbed.972697
AMA Doğru Y. New presentations of real numbers with k-Lucas numbers. BAUN Fen. Bil. Enst. Dergisi. Ocak 2023;25(1):31-36. doi:10.25092/baunfbed.972697
Chicago Doğru, Yusuf. “New Presentations of Real Numbers With K-Lucas Numbers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 1 (Ocak 2023): 31-36. https://doi.org/10.25092/baunfbed.972697.
EndNote Doğru Y (01 Ocak 2023) New presentations of real numbers with k-Lucas numbers. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 31–36.
IEEE Y. Doğru, “New presentations of real numbers with k-Lucas numbers”, BAUN Fen. Bil. Enst. Dergisi, c. 25, sy. 1, ss. 31–36, 2023, doi: 10.25092/baunfbed.972697.
ISNAD Doğru, Yusuf. “New Presentations of Real Numbers With K-Lucas Numbers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (Ocak 2023), 31-36. https://doi.org/10.25092/baunfbed.972697.
JAMA Doğru Y. New presentations of real numbers with k-Lucas numbers. BAUN Fen. Bil. Enst. Dergisi. 2023;25:31–36.
MLA Doğru, Yusuf. “New Presentations of Real Numbers With K-Lucas Numbers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 1, 2023, ss. 31-36, doi:10.25092/baunfbed.972697.
Vancouver Doğru Y. New presentations of real numbers with k-Lucas numbers. BAUN Fen. Bil. Enst. Dergisi. 2023;25(1):31-6.