Araştırma Makalesi
BibTex RIS Kaynak Göster

On Some Fixed Curves in Sb- Metric Spaces

Yıl 2023, Cilt: 25 Sayı: 2, 650 - 660, 07.07.2023
https://doi.org/10.25092/baunfbed.1280244

Öz

In this paper, we mention new results to the fixed-figure problem on Sb- metric spaces. Especially, we emphasize Cassini curve and Appolonius circle. To do this, first of all we give the new notions of Moradi-type Cu1u2- Sb-contraction, Geraghty-type Cu1u2- Sb-contraction, Skof-type Cu1u2- Sb-contraction, Moradi-type Au1u2- Sb-contraction, Geraghty-type Au1u2- Sb-contraction, Skoftype Au1u2- Sb-contraction. With the help of these notions, we obtain some fixed-Cassini curve and fixed-Apollonius circle theorems on Sb- metric spaces.

Kaynakça

  • Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 2, 133-181, (1922).
  • Babu A. S., Dosenovic T., Ali M. M., Radenovic A., Rao K. P. R. Some Presic type results in b-dislocated metric spaces, Contructive Mathematical Analysis, 2 ,1, 40-48, (2019).
  • Karapınar E., A short survey on the recent fized point results on b-metric spaces, Contructive Mathematical Analysis, 1, 1, 15-44, (2018).
  • Nazam M., Arshad M. Park C., Acar Ö., Yun S., Anastassiou G. A., On solution of a system of differntial equations via fixed point theorem, Journal of Applied Analysis and Computation, 27, 3, 417-426, (2019).
  • Sedghi S., Gholidahneh A., Dosenovic T., Esfahani J., Radenovic S. Common fixed point of four maps in -metric spaces, Journal of Linear and Topological Algebra, 5, 2, 93-104, (2016).
  • Taş N., Özgür N. A new generalization of Rhoades’ condition, International Journal of Optimization and Control: Theories & Applications, 12, 2, 169-183, (2022).
  • Özgür N. Y., Taş N. Some fixed-circle theorems on metric spaces, Bulletin of The Malaysian Mathematical Sciences Society, 42, 4, 1433-1449, (2019).
  • Mlaiki N., Özgür N., Taş N. New-fixed circle results related to -contractive and -expanding mappings on metric spaces, arXiv:2101.10770.
  • Özgür N. Y., Taş N., Some fixed circle theorems and discontinuity at fixed circle, AIP Conference Proceeding 1926, 020048, (2018).
  • Özgür N. Y., Taş N. Generalizations of Metric Spaces: From the Fixed-Point Theory to the fixed-circle Theory, Applications of Nonlinear Analysis Springer Optimization and Its Applications, 134, Springer, Cham, 847-895, (2018).
  • Özgür N. Y. Fixed-disc results via simulation functions, Turkish Journal Mathematics, 43, 6, 2794-2805, (2019).
  • Pant R. P., Özgür N. Y., Taş N. Discontinuity at fixed points with applications, Bulletin of The Malaysian Mathematical Sciences Society-Simon Stevin, 26, 571-589, (2019).
  • Pant R. P., Özgür N. Y., Taş N. On discontinuity problem at fixed point, Bulletin of The Malaysian Mathematical Sciences Society, 43, 499-517, (2020).
  • Pant R. P., Özgür N. Y., Taş N., Pant A., Joshi M. C. New results on discontinuity at fixed point, Journal of Fixed Point Theory Applications, 22, 39, (2020).
  • Taş N. Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish Journal of Mathematics, 44, 4, 133330-1344, (2020).
  • Özgür N. Y., Taş N. Geometric properties of fixed points and simulation functions, arXiv:2102.05417.
  • Erçınar G. Z., Some Geometric properties of fixed-points, Doktora Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2020).
  • Joshi M., Tomar A., Padaliya S. K. Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Applied Mathematics E-Notes, 21, 225-237, (2021).
  • Taş N., A contribution to the fixed-disc results on S-metric spaces, 7th Ifs And Contemporary Mathematics Conference, May, 25-29, Turkey, 172-176, (2021).
  • Özgür N. Y., Taş N. New fixed-figure results on metric spaces, Fixed point theory and fractional calculus—recent advances and applications, Forum Interdiscip. Math., Springer, Singapore, 33–62, (2022).
  • Aytimur H., Taş N. A., geometric interpretation to fixed-point theory on -metric spaces, Electronic Journal of Mathematical Analysis and Applications., 10, 2, 95–104, (2022).
  • Aytimur H., Güvenç Ş., Taş N., New Fixed-Figure Results with the Notion of k-Ellipse, Mathematica Moravica, 27, 1, 37–52, (2023).
  • Taş N., Ayoob I., Mlaiki N., Some common fixed-point and fixed-figure results with a function family on -metric spaces, AIMS Mathematics, 8, 6, 13050-13065, (2023).
  • Bakhtin I. A. The contraction mapping principle in quasimetric spaces, Functional Analysis Uni-anowsk Gos. Ped. Institute, 30, 26-37, (1989).
  • Sedghi S., Shobe N., Aliouche A. A generalization of fixed point theorems in S-metric spaces, Matematicki Vesnik, 64, 3, 258-266, (2012).
  • Taş N., Özgür N. New generalized fixed point results on -metric spaces, Konuralp Journal of Mathematics, 9, 1, 24-32, (2021).
  • Moradi S. Fixed point of single-valued cyclic weak -contraction mappings, Filomat, 28, 1747-1752, (2014).
  • Geraghty M. A. On contractive mappings, Proceeding of the American Mathematical Society, 40, 604-608, (1973).
  • Skof F. Theoremi di punto fisso per applicazioni negli spazi metrici, Atti Accademia Scienze Torino Classe Fisiche Matematiche Naturali, 111, 323-329, (1977).
  • Özgür N. Y., Taş N. Some new contractive mappings on -metric spaces and their relationships with the mapping (S25), Mathematical Sciences, 11, 1, 7-16, (2017).

Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine

Yıl 2023, Cilt: 25 Sayı: 2, 650 - 660, 07.07.2023
https://doi.org/10.25092/baunfbed.1280244

Öz

Bu çalışmada, Sb - metrik uzaylarda sabit figüre problemleri için yeni çözümlerden bahsedilecektir. Özellikle, Cassini Eğrisi ve Apoollonius çemberi üzerinde durulacaktır. Bunun için ilk olarak Moradi tipinde Cu1u2-Sb -daralma, Geraghty tipinde Cu1u2-Sb -daralma, Skof tipinde Cu1u2-Sb -daralma, Moradi tipinde Au1u2-Sb -daralma, Geraghty tipinde Au1u2-Sb -daralma, Skof tipinde Au1u2-Sb -daralma kavramları verilecektir. Bu kavramlar yardımı ile - metrik uzaylar üzerinde sabit Cassini eğrisi ve sabit Apollonius çemberi teoremleri elde edilecektir.

Kaynakça

  • Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 2, 133-181, (1922).
  • Babu A. S., Dosenovic T., Ali M. M., Radenovic A., Rao K. P. R. Some Presic type results in b-dislocated metric spaces, Contructive Mathematical Analysis, 2 ,1, 40-48, (2019).
  • Karapınar E., A short survey on the recent fized point results on b-metric spaces, Contructive Mathematical Analysis, 1, 1, 15-44, (2018).
  • Nazam M., Arshad M. Park C., Acar Ö., Yun S., Anastassiou G. A., On solution of a system of differntial equations via fixed point theorem, Journal of Applied Analysis and Computation, 27, 3, 417-426, (2019).
  • Sedghi S., Gholidahneh A., Dosenovic T., Esfahani J., Radenovic S. Common fixed point of four maps in -metric spaces, Journal of Linear and Topological Algebra, 5, 2, 93-104, (2016).
  • Taş N., Özgür N. A new generalization of Rhoades’ condition, International Journal of Optimization and Control: Theories & Applications, 12, 2, 169-183, (2022).
  • Özgür N. Y., Taş N. Some fixed-circle theorems on metric spaces, Bulletin of The Malaysian Mathematical Sciences Society, 42, 4, 1433-1449, (2019).
  • Mlaiki N., Özgür N., Taş N. New-fixed circle results related to -contractive and -expanding mappings on metric spaces, arXiv:2101.10770.
  • Özgür N. Y., Taş N., Some fixed circle theorems and discontinuity at fixed circle, AIP Conference Proceeding 1926, 020048, (2018).
  • Özgür N. Y., Taş N. Generalizations of Metric Spaces: From the Fixed-Point Theory to the fixed-circle Theory, Applications of Nonlinear Analysis Springer Optimization and Its Applications, 134, Springer, Cham, 847-895, (2018).
  • Özgür N. Y. Fixed-disc results via simulation functions, Turkish Journal Mathematics, 43, 6, 2794-2805, (2019).
  • Pant R. P., Özgür N. Y., Taş N. Discontinuity at fixed points with applications, Bulletin of The Malaysian Mathematical Sciences Society-Simon Stevin, 26, 571-589, (2019).
  • Pant R. P., Özgür N. Y., Taş N. On discontinuity problem at fixed point, Bulletin of The Malaysian Mathematical Sciences Society, 43, 499-517, (2020).
  • Pant R. P., Özgür N. Y., Taş N., Pant A., Joshi M. C. New results on discontinuity at fixed point, Journal of Fixed Point Theory Applications, 22, 39, (2020).
  • Taş N. Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turkish Journal of Mathematics, 44, 4, 133330-1344, (2020).
  • Özgür N. Y., Taş N. Geometric properties of fixed points and simulation functions, arXiv:2102.05417.
  • Erçınar G. Z., Some Geometric properties of fixed-points, Doktora Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2020).
  • Joshi M., Tomar A., Padaliya S. K. Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Applied Mathematics E-Notes, 21, 225-237, (2021).
  • Taş N., A contribution to the fixed-disc results on S-metric spaces, 7th Ifs And Contemporary Mathematics Conference, May, 25-29, Turkey, 172-176, (2021).
  • Özgür N. Y., Taş N. New fixed-figure results on metric spaces, Fixed point theory and fractional calculus—recent advances and applications, Forum Interdiscip. Math., Springer, Singapore, 33–62, (2022).
  • Aytimur H., Taş N. A., geometric interpretation to fixed-point theory on -metric spaces, Electronic Journal of Mathematical Analysis and Applications., 10, 2, 95–104, (2022).
  • Aytimur H., Güvenç Ş., Taş N., New Fixed-Figure Results with the Notion of k-Ellipse, Mathematica Moravica, 27, 1, 37–52, (2023).
  • Taş N., Ayoob I., Mlaiki N., Some common fixed-point and fixed-figure results with a function family on -metric spaces, AIMS Mathematics, 8, 6, 13050-13065, (2023).
  • Bakhtin I. A. The contraction mapping principle in quasimetric spaces, Functional Analysis Uni-anowsk Gos. Ped. Institute, 30, 26-37, (1989).
  • Sedghi S., Shobe N., Aliouche A. A generalization of fixed point theorems in S-metric spaces, Matematicki Vesnik, 64, 3, 258-266, (2012).
  • Taş N., Özgür N. New generalized fixed point results on -metric spaces, Konuralp Journal of Mathematics, 9, 1, 24-32, (2021).
  • Moradi S. Fixed point of single-valued cyclic weak -contraction mappings, Filomat, 28, 1747-1752, (2014).
  • Geraghty M. A. On contractive mappings, Proceeding of the American Mathematical Society, 40, 604-608, (1973).
  • Skof F. Theoremi di punto fisso per applicazioni negli spazi metrici, Atti Accademia Scienze Torino Classe Fisiche Matematiche Naturali, 111, 323-329, (1977).
  • Özgür N. Y., Taş N. Some new contractive mappings on -metric spaces and their relationships with the mapping (S25), Mathematical Sciences, 11, 1, 7-16, (2017).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Hülya Aytimur 0000-0003-4420-9861

Erken Görünüm Tarihi 6 Temmuz 2023
Yayımlanma Tarihi 7 Temmuz 2023
Gönderilme Tarihi 11 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 2

Kaynak Göster

APA Aytimur, H. (2023). Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 650-660. https://doi.org/10.25092/baunfbed.1280244
AMA Aytimur H. Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2023;25(2):650-660. doi:10.25092/baunfbed.1280244
Chicago Aytimur, Hülya. “Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 2 (Temmuz 2023): 650-60. https://doi.org/10.25092/baunfbed.1280244.
EndNote Aytimur H (01 Temmuz 2023) Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 650–660.
IEEE H. Aytimur, “Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine”, BAUN Fen. Bil. Enst. Dergisi, c. 25, sy. 2, ss. 650–660, 2023, doi: 10.25092/baunfbed.1280244.
ISNAD Aytimur, Hülya. “Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (Temmuz 2023), 650-660. https://doi.org/10.25092/baunfbed.1280244.
JAMA Aytimur H. Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine. BAUN Fen. Bil. Enst. Dergisi. 2023;25:650–660.
MLA Aytimur, Hülya. “Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 2, 2023, ss. 650-6, doi:10.25092/baunfbed.1280244.
Vancouver Aytimur H. Sb-Metrik Uzaylarda Bazı Sabit Eğriler Üzerine. BAUN Fen. Bil. Enst. Dergisi. 2023;25(2):650-6.