Araştırma Makalesi
BibTex RIS Kaynak Göster

Chromatic indices of finite affine & projective planes and their duals

Yıl 2025, Cilt: 27 Sayı: 2, 667 - 680, 15.07.2025
https://doi.org/10.25092/baunfbed.1583147

Öz

In this study, rather than transitioning directly from geometric structures to graph theory, we have derived several general results and theorems concerning the coloring of points and lines within affine and projective structures. We approached this topic through the lens of vertex and edge coloring concepts, pivotal subjects within graph theory. Our investigation sheds light on the intricate relationship between geometric structures and graph theory, providing a novel perspective on coloring methodologies. Extending the principles of vertex and edge coloring to affine and projective spaces, we uncover fundamental insights into the interplay between geometry and combinatorial mathematics.

Kaynakça

  • Erdös P., On The Combinatorial Problems Which I Would Most Like To See Solved, Combinatorica pages 25–42, https://doi.org/10.1007/BF02579174, (1981).
  • Beutelspacher, A., Jungnickel, D.; Vanstone, S.A., On the chromatic index of a finite projective space, Geom Dedicata 32, 313–318, https://doi.org/10.1007/BF00147923, (1989).
  • Araujo-Pardo, G., Kiss, G., Rubio-Montiel, C., Vázquez-Avila, A., On chromatic indices of finite affine spaces, arXiv preprint, arXiv:1711.09031, (2017).
  • Xu, L., Feng, T., The chromatic index of finite projective spaces, J. Combin. Des., 31, 432–446, https://doi.org/10.1002/jcd.21904, (2023).
  • Meszka, M., The Chromatic Index of Projective Triple Systems, J. Combin. Designs, 21: 531-540, https://doi.org/10.1002/jcd.21368, (2013).
  • Ozeki, K., Kempe Equivalence Classes of Cubic Graphs Embedded on the Projective Plane, Combinatorica, 42 (Suppl 2), 1451–1480, https://doi.org/10.1007/s00493-021-4330-2, (2022).
  • Hall, M., Projective Planes, Trans. Am. Math. Soc., 54, 229-77, (1943) and correction, 65, 473-4, (1949).
  • Batten, L. M., Combinatorics of Finite Geometries, 2nd edition, Cambridge University Press: New York, (1997).
  • Pickert, G., Projektive Ebenen, Springer-Verlag: Berlin, Gottingen, Heidelberg, (1955).
  • Hughes, D. R., Piper, F. C., Projective Planes, Springer: New York, (1973).
  • Bennett, M. K., Affine and Projective Geometry, John Wiley-Interscience: New York, (1995).
  • Faulkner, T. E., Projective Geometry, Dover: New York, (1949).
  • Lam, C. W. H., Thiel, L., Swiercz, S., The Non-Existence of Finite Projective Planes of Order 10. Canadian Journal of Mathematics, 41-6: 1117–1123, https://doi.org/10.4153/CJM-1989-049-4, (1989).
  • Kaya, R., Projektif Geometri, Osmangazi Üni. Yayınları: Eskişehir, (2005).
  • Jungnickel, D., Graphs, Networks and Algorithms, Springer: Augsburg, (2013).
  • Bondy, A., Murty, U.S.R., Graph Theory, Springer: London, (2008).

Sonlu Afin & Projektif düzlemlerin ve duallerinin kromatik indisleri

Yıl 2025, Cilt: 27 Sayı: 2, 667 - 680, 15.07.2025
https://doi.org/10.25092/baunfbed.1583147

Öz

Bu çalışmada, doğrudan geometrik yapılardan graf teorisine geçiş yapmak yerine, afin ve projektif yapılardaki nokta ve doğruların renklendirilmesiyle ilgili birkaç genel sonuç ve teorem ürettik. Bu konuya, graf teorideki temel konular olan köşe ve kenar renklendirme kavramları merceğinden yaklaştık. Araştırmamız, geometrik yapılar ve graf teori arasındaki karmaşık ilişkiye ışık tutarak, renklendirme metodolojilerine yeni bir bakış açısı sağlıyor. Köşe ve kenar renklendirme ilkelerini afin ve projektif uzaylara genişleterek, geometri ve kombinatoryal matematik arasındaki etkileşime dair temel içgörüler ortaya çıkarıyoruz.

Kaynakça

  • Erdös P., On The Combinatorial Problems Which I Would Most Like To See Solved, Combinatorica pages 25–42, https://doi.org/10.1007/BF02579174, (1981).
  • Beutelspacher, A., Jungnickel, D.; Vanstone, S.A., On the chromatic index of a finite projective space, Geom Dedicata 32, 313–318, https://doi.org/10.1007/BF00147923, (1989).
  • Araujo-Pardo, G., Kiss, G., Rubio-Montiel, C., Vázquez-Avila, A., On chromatic indices of finite affine spaces, arXiv preprint, arXiv:1711.09031, (2017).
  • Xu, L., Feng, T., The chromatic index of finite projective spaces, J. Combin. Des., 31, 432–446, https://doi.org/10.1002/jcd.21904, (2023).
  • Meszka, M., The Chromatic Index of Projective Triple Systems, J. Combin. Designs, 21: 531-540, https://doi.org/10.1002/jcd.21368, (2013).
  • Ozeki, K., Kempe Equivalence Classes of Cubic Graphs Embedded on the Projective Plane, Combinatorica, 42 (Suppl 2), 1451–1480, https://doi.org/10.1007/s00493-021-4330-2, (2022).
  • Hall, M., Projective Planes, Trans. Am. Math. Soc., 54, 229-77, (1943) and correction, 65, 473-4, (1949).
  • Batten, L. M., Combinatorics of Finite Geometries, 2nd edition, Cambridge University Press: New York, (1997).
  • Pickert, G., Projektive Ebenen, Springer-Verlag: Berlin, Gottingen, Heidelberg, (1955).
  • Hughes, D. R., Piper, F. C., Projective Planes, Springer: New York, (1973).
  • Bennett, M. K., Affine and Projective Geometry, John Wiley-Interscience: New York, (1995).
  • Faulkner, T. E., Projective Geometry, Dover: New York, (1949).
  • Lam, C. W. H., Thiel, L., Swiercz, S., The Non-Existence of Finite Projective Planes of Order 10. Canadian Journal of Mathematics, 41-6: 1117–1123, https://doi.org/10.4153/CJM-1989-049-4, (1989).
  • Kaya, R., Projektif Geometri, Osmangazi Üni. Yayınları: Eskişehir, (2005).
  • Jungnickel, D., Graphs, Networks and Algorithms, Springer: Augsburg, (2013).
  • Bondy, A., Murty, U.S.R., Graph Theory, Springer: London, (2008).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kombinatorik ve Ayrık Matematik (Fiziksel Kombinatorik Hariç), Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdurrahman Dayıoğlu 0000-0001-8441-6406

Fatma Özen Erdoğan 0000-0002-9691-4565

Erken Görünüm Tarihi 11 Temmuz 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 11 Kasım 2024
Kabul Tarihi 5 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 2

Kaynak Göster

APA Dayıoğlu, A., & Özen Erdoğan, F. (2025). Chromatic indices of finite affine & projective planes and their duals. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 667-680. https://doi.org/10.25092/baunfbed.1583147
AMA Dayıoğlu A, Özen Erdoğan F. Chromatic indices of finite affine & projective planes and their duals. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2025;27(2):667-680. doi:10.25092/baunfbed.1583147
Chicago Dayıoğlu, Abdurrahman, ve Fatma Özen Erdoğan. “Chromatic indices of finite affine & projective planes and their duals”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 2 (Temmuz 2025): 667-80. https://doi.org/10.25092/baunfbed.1583147.
EndNote Dayıoğlu A, Özen Erdoğan F (01 Temmuz 2025) Chromatic indices of finite affine & projective planes and their duals. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 667–680.
IEEE A. Dayıoğlu ve F. Özen Erdoğan, “Chromatic indices of finite affine & projective planes and their duals”, BAUN Fen. Bil. Enst. Dergisi, c. 27, sy. 2, ss. 667–680, 2025, doi: 10.25092/baunfbed.1583147.
ISNAD Dayıoğlu, Abdurrahman - Özen Erdoğan, Fatma. “Chromatic indices of finite affine & projective planes and their duals”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (Temmuz2025), 667-680. https://doi.org/10.25092/baunfbed.1583147.
JAMA Dayıoğlu A, Özen Erdoğan F. Chromatic indices of finite affine & projective planes and their duals. BAUN Fen. Bil. Enst. Dergisi. 2025;27:667–680.
MLA Dayıoğlu, Abdurrahman ve Fatma Özen Erdoğan. “Chromatic indices of finite affine & projective planes and their duals”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 2, 2025, ss. 667-80, doi:10.25092/baunfbed.1583147.
Vancouver Dayıoğlu A, Özen Erdoğan F. Chromatic indices of finite affine & projective planes and their duals. BAUN Fen. Bil. Enst. Dergisi. 2025;27(2):667-80.