Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Uzamsal Akıl Yürütme Düzeyindeki İlköğretim Matematik Öğretmeni Adaylarının Kovaryasyonel Akıl Yürütme Becerileri

Yıl 2024, , 2804 - 2834, 21.12.2024
https://doi.org/10.35675/befdergi.1501689

Öz

Bu araştırmanın amacı ilköğretim matematik öğretmeni adaylarının uzamsal akıl yürütme düzeylerini tespit etmek ve farklı uzamsal akıl yürütme düzeylerindeki öğretmen adaylarının kovaryasyonel akıl yürütme becerilerini incelemektir. Bir durum çalışması olan bu araştırmanın ilk kısmında öğretmen adaylarının uzamsal akıl yürütme düzeyleri tespit edilmeye çalışılmıştır. 13 öğretmen adayına Uzamsal Yetenek Testi uygulanmıştır. Elde edilen verilerin analizinde nicel betimsel istatistiklerden faydalanılmıştır. Analiz sonucunda farklı uzamsal akıl yürütme düzeyine sahip beş öğretmen adayı tespit edilmiştir ve araştırmanın ikinci kısmında bu öğretmen adaylarının kovaryasyonel akıl yürütme becerileri incelenmiştir. Kovaryasyonel Akıl Yürütme Formu ile yapılandırılmamış ve yarı yapılandırılmış görüşmelerden elde edilen veriler nitel betimsel analiz ile çözümlenmiştir. Araştırmanın sonuçlarına göre öğretmeni adaylarının uzamsal akıl yürütme düzeyleri arttıkça kovaryasyonel akıl yürütme becerileri de artmaktadır.

Kaynakça

  • Aiello, M. (2002). Spatial reasoning: Theory and practice. [Doctoral Thesis, Universiteit van Amsterdam-Amsterdam]. UvA-DARE Digital Academic Repository.
  • Arıcı, S. (2012). The effect of origami-based instruction on spatial visualization, geometry achievement and geometric reasoning of tenth-grade students (Tez No: 301704) [Yüksek lisans tezi, Boğaziçi Üniversitesi-İstanbul]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Battista, M. T. (1994). On Greeno’s environmental/model view of conceptual domains: A spatial/geometric perspective. Journal for Research in Mathematics Education, 25(1), 86-99. https://doi.org/10.2307/749293
  • Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(5), 332-340. https:/-/doi.org/10.2307/749007
  • Binet. A., & Simon, T. (1916). The development of intelligence in children. Baltimore, Williams & Wilkins. (Reprinted 1973, New York: Arno Press; 1983, Salem, NH: Ayer Company).
  • Byrne, R. M. J., & Johnson-Laird, P. N. (1989). Spatial reasoning. Journal of memory and language, 28(5), 564-575. https://doi.org/10.1016/0749-596X(89)90013-2
  • Cantürk-Günhan, B., Turgut, M., & Yılmaz, S. (2009). Spatial ability of a mathematics teacher: The case of Oya. IBSU Scientific Journal, 3(1), 151-158.
  • Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education III, Conference Board of the Mathematical Sciences, Issues in Mathematics Education, 7, 114–163.
  • Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A Framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
  • Carpenter, P. A., & Just, M. A. (1978). Eye fixations during mental rotation. In J. W. Senders, D. F. Fisher, & R. A. Monty (Eds.). Eye movements and the higher psychological functions (pp. 115-133). Erlbaum Associates, Inc.
  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 420–464). Macmillan Publishing Co, Inc.
  • Çakmak, Z., Konyalıoğlu, A. C., & Işık, A. (2014). İlköğretim matematik öğretmen adaylarının üç boyutlu cisimlere ilişkin konu alan bilgilerinin incelenmesi. Middle Eastern and African Journal of Educational Research, 8, 28-44.
  • Delialioğlu, Ö. (1996). Contribution of students’ logical thinking ability, mathematical skills and spatial ability on achievement in secondary school physics (Tez No: 56582) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Delialioğlu, Ö., & Aşkar, P. (1999). Contriburion of students’ mathematical skills and spatial ability to achievement in secondary school physics. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 16-17, 34-39.
  • Dündar, M., Yılmaz, R., & Terzi, Y. (2019). Matematik ve sınıf öğretmen adaylarının uzamsal yeteneklerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(1), 113-130.
  • Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Educational Testing Service.
  • Eryaman, Z. (2009). A study on sixth grade students' spatial reasoning regarding 2D representations of 3D objects (Tez No: 250710) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184-206. https://doi.org/10.2307/748393
  • Ferrari-Escolá, M., Martínez-Sierra, G., & Méndez-Guevara, M. E. M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. The Journal of Mathematical Behavior, 42, 92-108. https://doi.org/10.1016/j.jmathb.2016.03.003
  • Hacıömeroğlu, G., & Hacıömeroğlu, E. S. (2017). Cinsiyet, uzamsal beceri, mantıksal düşünme becerisi ve çözüm tercihleri arasındaki ilişkinin incelenmesi. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 7(1), 116-131. https://doi.org/10.17984/adyuebd.310833
  • Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31(3), 313-330. https://doi.org/10.1016/j.jmathb.2012.01.001
  • Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137-172. https://doi.org/10.1037/0033-295X.92.2.137
  • Karaman, T., & Yontar-Toğrol, A. (2015). Relationship between gender, spatial visualization, spatial orientation, flexibility of closure abilities and performance related to plane geometry subject among sixth grade students. Boğaziçi Üniversitesi Eğitim Dergisi, 26(1), 1-26.
  • Kayhan, E. B. (2005). Investigation of high school students’ spatial ability (Tez No: 167317) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Kertil, M. (2020). Covariational reasoning of prospective mathematics teachers: How do dynamic animations affect? Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(2), 312-342. https://doi.org/10.16949/turkbilmat.652481
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2019). Developing prospective teachers’ covariational reasoning through a model development sequence. Mathematical Thinking and Learning, 21(3), 207-233. https://doi.org/10.1080/10986065.2019.1576001
  • Kösa, T. (2016a). Effects of using dynamic mathematics software on pre-service mathematics teachers’ spatial visualization skills: The case of spatial analytic geometry. Educational Research and Reviews, 11(7), 449-458.
  • Kösa, T. (2016b). The effect of using dynamic mathematics software: Cross section and visualization. International Journal for Technology in Mathematics Education, 23(4), 121-128.
  • Lean, G., & Clements, M. A. K. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(3), 267-299. https://doi.org/10.1007/BF00311060
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56(6), 1479-1498. https://doi.org/10.2307/1130467
  • Lohman, D. F. (1996). Spatial ability and G. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and measurement. (pp. 97–116). Erlbaum Associates, Inc.
  • Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25(1), 69-94. https://doi.org/10.1007/s10648-012-9215-x
  • Martin-Dorta, N., Sanchez-Berriel, I., Bravo, M., Hernandez, J., Saorin, J. S., & Contero, M. (2014). Virtual Blocks: A serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications, 73(3), 1575-1595. https://doi.org/10.1007/s11042-013-1652-0
  • Martin-Gutiérrez, J., Saorín, J., Martin-Dorta, N., & Contero, M. (2009). Do video games improve spatial abilities of engineering students? International Journal of Engineering Education, 25(6), 1194-1204.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  • Millî Eğitim Bakanlığı [MEB]. (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar). Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı Yayınları. https://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=329
  • Okagaki, L. R., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescents. Journal of Applied Developmental Psychology, 15(1), 33-58. https://doi.org/10.1016/0193-3973(94)90005-1
  • Olgun, B. (2016). Preservice mathematics teachers solving word problems: Visual-spatial abilities, use of representations, and types of mathematical thinking (Tez No: 435137) [Yüksek lisans tezi, Boğaziçi Üniversitesi-İstanbul]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10. https://doi.org/10.1501/0003624
  • Özcan, K. V., Akbay, M., & Karakuş, T. (2016). Üniversite öğrencilerinin oyun oynama alışkanlıklarının uzamsal becerilerine etkisi. Kastamonu Eğitim Dergisi, 24(1), 37-52.
  • Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational reasoning. The Journal of Mathematical Behavior, 48, 137-151. https://doi.org/10.1016/j.jmathb.2017.08.003
  • Patton, M. Q. (2014). Nitel araştırma ve değerlendirme yöntemleri (3. Baskıdan çeviri) (M. Bütün ve S. B. Demir, Çev. Haz.) Pegem Akademi.
  • Pavlovičová, G., Bočková, V., & Laššová, K. (2022). Spatial ability and geometric thinking of the students of teacher training for primary education. TEM Journal, 11(1), 388-395. https://doi.org/10.18421/tem111-49
  • Polat, K., Oflaz, G., & Akgün, L. (2019). Görsel ispat becerisinin, van Hiele geometrik düşünme düzeyleri ve uzamsal yetenek ile ilişkisi. Erciyes Eğitim Dergisi, 3(2), 105-122. https://doi.org/10.32433/eje.604126
  • Putri, R. O. E. (2018). Spatial skill profile of mathematics pre-service teachers. In Journal of Physics: Conference Series (Vol. 947, No. 1, p. 012065). IOP Publishing.
  • Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson, & W. N. Coulombe (Vol. Eds.), Proceedings of the annual meeting of the psychology of mathematics education – North America. (Vol. 1, pp. 298–304). North Carolina State University.
  • Sarı, M. H. (2016). Uzamsal beceri ve uzamsal kaygı arasındaki ilişki: Sınıf öğretmeni adayları üzerine bir araştırma. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(3), 646-658. https://doi.org/10.16949/turkbilmat.277877
  • Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge Univ. Press. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://dx.doi.org/10.3102/0013189X015002004
  • Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (3rd ed., pp. 443–466). Sage Publications, Inc.
  • Stalvey, H. E., & Vidakovic, D. (2015). Students’ reasoning about relationships between variables in a real-world problem. The Journal of Mathematical Behavior, 40, 192-210. https://doi.org/10.1016/j.jmathb.2015.08.002
  • Şen, E. Ö. (2021). İlköğretim matematik öğretmen adaylarının uzamsal görselleştirme ve zihnin uzamsal alışkanlıkları arasındaki ilişki. Anadolu Journal of Educational Sciences International, 11(1), 268-286. https://doi.org/10.18039/ajesi.756498
  • Şen-Zeytun, A., Çetinkaya, B., & Erbaş, A. K. (2010). Mathematics teachers’ covariational reasoning levels and predictions about students’ covariational reasoning abilities. Educational Sciences: Theory and Practice, 10(3), 1601-1612.
  • Thompson, P. W. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebraic. [Yayımlanmamış taslak], Center for Research in Mathematics & Science Education, San Diego State University.
  • Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics, 25(3), 165-208. https://doi.org/10.1007/BF01273861
  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2-3), 229-274. https://doi.org/10.1007/BF01273664
  • Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.
  • Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48(1), 95-111. http://dx.doi.org/10.1016/j.jmathb.2017.08.001
  • Turgut, M., Cantürk-Günhan, B., & Yılmaz, S. (2009). Uzamsal yetenek hakkında bir bilgi seviyesi incelenmesi. e-Journal of New World Sciences Academy, 4(2), 317-326.
  • Turğut, M. (2010). Teknoloji destekli lineer cebir öğretiminin ilköğretim matematik öğretmen adaylarının uzamsal yeteneklerine etkisi (Tez No: 265541) [Doktora tezi, Dokuz Eylül Üniversitesi-İzmir]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Turğut, M., & Yenilmez, K. (2012). Matematik öğretmeni adaylarının uzamsal görselleştirme becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Turğut, M., Yenilmez, K., & Balbağ, M. Z. (2017). Öğretmen adaylarının mantıksal ve uzamsal düşünme becerileri: Bölüm, cinsiyet ve akademik performansın etkisi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(41), 265-283. https://doi.org/10.21764/efd.13098
  • Ulusoy, F. (2020). Öğretmen adaylarının iki niceliğin eş zamanlı değişimini içeren dinamik fonksiyonel durumlar için oluşturdukları grafik temsilleri. Eğitimde Nitel Araştırmalar Dergisi – Journal of Qualitative Research in Education, 8(2), 462-488. https://doi.org/10.14689/issn.2148-624.1.8c.2s.3m
  • Ünal, H., Jakubowski, E., & Corey, D. (2009). Differences in learning geometry among high and low spatial ability pre-service mathematics teachers. International Journal of Mathematical Education in Science and Technology, 40(8), 997-1012. https://doi.org/10.1080/00207390902912852
  • Yavuz-Mumcu, H., & Yıldız, S. (2015). Uzamsal düşünmeyi destekleyici web-tabanlı öğretim materyali geliştirme, uygulama ve değerlendirilmesi. İlköğretim Online, 14(4), 1290-1306. https://doi.org/10.17051/io.2015.48587
  • Yazgan, Y., & Kozaklı-Ülger, T. (2022). Matematik öğretmen adaylarının cebirsel, uzamsal, olasılıksal ve orantısal muhakemedeki başarı düzeylerinin karşılaştırılması. Turkish Studies-Educational Sciences, 17(3), 485-499. http://dx.doi.org/10.7827/TurkishStudies.-62371
  • Yemen-Karpuzcu, S., Ulusoy, F., & Işıksal-Bostan, M. (2017). Prospective middle school mathematics teachers’ covariational reasoning for interpreting dynamic events during peer interactions. International Journal of Science and Mathematics Education, 15, 89-108. https://doi.org/10.1007/s10763-015-9668-8
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41), 498-508.
  • Yolcu, B., & Kurtuluş, A. (2010). 6. sınıf öğrencilerinin uzamsal görselleştirme yeteneklerini geliştirme üzerine bir çalışma. İlköğretim Online, 9(1), 256-274.

Covariational Reasoning Skills of Primary School Mathematics Teacher Candidates at Different Spatial Reasoning Levels

Yıl 2024, , 2804 - 2834, 21.12.2024
https://doi.org/10.35675/befdergi.1501689

Öz

The aim of this study is to determine the spatial reasoning levels of primary school mathematics teacher candidates and to examine the covariational reasoning skills of teacher candidates at different spatial reasoning levels. In the first part of this research, which is a case study, it was tried to determine the spatial reasoning levels of prospective teachers. Spatial Ability Test was applied to 13 teacher candidates. Quantitative descriptive statistics were used in the analysis of the data obtained. As a result of the analysis, five teacher candidates with different spatial reasoning levels were identified, and in the second part of the research, the covariational reasoning skills of these teacher candidates were examined. Data obtained from unstructured and semi-structured interviews with the Covariational Reasoning Form were analyzed with qualitative descriptive analysis. According to the results, as prospective teachers’ spatial reasoning levels increase, their covariational reasoning skills also increase.

Kaynakça

  • Aiello, M. (2002). Spatial reasoning: Theory and practice. [Doctoral Thesis, Universiteit van Amsterdam-Amsterdam]. UvA-DARE Digital Academic Repository.
  • Arıcı, S. (2012). The effect of origami-based instruction on spatial visualization, geometry achievement and geometric reasoning of tenth-grade students (Tez No: 301704) [Yüksek lisans tezi, Boğaziçi Üniversitesi-İstanbul]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Battista, M. T. (1994). On Greeno’s environmental/model view of conceptual domains: A spatial/geometric perspective. Journal for Research in Mathematics Education, 25(1), 86-99. https://doi.org/10.2307/749293
  • Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(5), 332-340. https:/-/doi.org/10.2307/749007
  • Binet. A., & Simon, T. (1916). The development of intelligence in children. Baltimore, Williams & Wilkins. (Reprinted 1973, New York: Arno Press; 1983, Salem, NH: Ayer Company).
  • Byrne, R. M. J., & Johnson-Laird, P. N. (1989). Spatial reasoning. Journal of memory and language, 28(5), 564-575. https://doi.org/10.1016/0749-596X(89)90013-2
  • Cantürk-Günhan, B., Turgut, M., & Yılmaz, S. (2009). Spatial ability of a mathematics teacher: The case of Oya. IBSU Scientific Journal, 3(1), 151-158.
  • Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. Research in Collegiate Mathematics Education III, Conference Board of the Mathematical Sciences, Issues in Mathematics Education, 7, 114–163.
  • Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A Framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
  • Carpenter, P. A., & Just, M. A. (1978). Eye fixations during mental rotation. In J. W. Senders, D. F. Fisher, & R. A. Monty (Eds.). Eye movements and the higher psychological functions (pp. 115-133). Erlbaum Associates, Inc.
  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 420–464). Macmillan Publishing Co, Inc.
  • Çakmak, Z., Konyalıoğlu, A. C., & Işık, A. (2014). İlköğretim matematik öğretmen adaylarının üç boyutlu cisimlere ilişkin konu alan bilgilerinin incelenmesi. Middle Eastern and African Journal of Educational Research, 8, 28-44.
  • Delialioğlu, Ö. (1996). Contribution of students’ logical thinking ability, mathematical skills and spatial ability on achievement in secondary school physics (Tez No: 56582) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Delialioğlu, Ö., & Aşkar, P. (1999). Contriburion of students’ mathematical skills and spatial ability to achievement in secondary school physics. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 16-17, 34-39.
  • Dündar, M., Yılmaz, R., & Terzi, Y. (2019). Matematik ve sınıf öğretmen adaylarının uzamsal yeteneklerinin incelenmesi. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 38(1), 113-130.
  • Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Educational Testing Service.
  • Eryaman, Z. (2009). A study on sixth grade students' spatial reasoning regarding 2D representations of 3D objects (Tez No: 250710) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal for Research in Mathematics Education, 16(3), 184-206. https://doi.org/10.2307/748393
  • Ferrari-Escolá, M., Martínez-Sierra, G., & Méndez-Guevara, M. E. M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. The Journal of Mathematical Behavior, 42, 92-108. https://doi.org/10.1016/j.jmathb.2016.03.003
  • Hacıömeroğlu, G., & Hacıömeroğlu, E. S. (2017). Cinsiyet, uzamsal beceri, mantıksal düşünme becerisi ve çözüm tercihleri arasındaki ilişkinin incelenmesi. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 7(1), 116-131. https://doi.org/10.17984/adyuebd.310833
  • Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31(3), 313-330. https://doi.org/10.1016/j.jmathb.2012.01.001
  • Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137-172. https://doi.org/10.1037/0033-295X.92.2.137
  • Karaman, T., & Yontar-Toğrol, A. (2015). Relationship between gender, spatial visualization, spatial orientation, flexibility of closure abilities and performance related to plane geometry subject among sixth grade students. Boğaziçi Üniversitesi Eğitim Dergisi, 26(1), 1-26.
  • Kayhan, E. B. (2005). Investigation of high school students’ spatial ability (Tez No: 167317) [Yüksek lisans tezi, Orta Doğu Teknik Üniversitesi-Ankara]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Kertil, M. (2020). Covariational reasoning of prospective mathematics teachers: How do dynamic animations affect? Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(2), 312-342. https://doi.org/10.16949/turkbilmat.652481
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2019). Developing prospective teachers’ covariational reasoning through a model development sequence. Mathematical Thinking and Learning, 21(3), 207-233. https://doi.org/10.1080/10986065.2019.1576001
  • Kösa, T. (2016a). Effects of using dynamic mathematics software on pre-service mathematics teachers’ spatial visualization skills: The case of spatial analytic geometry. Educational Research and Reviews, 11(7), 449-458.
  • Kösa, T. (2016b). The effect of using dynamic mathematics software: Cross section and visualization. International Journal for Technology in Mathematics Education, 23(4), 121-128.
  • Lean, G., & Clements, M. A. K. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(3), 267-299. https://doi.org/10.1007/BF00311060
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56(6), 1479-1498. https://doi.org/10.2307/1130467
  • Lohman, D. F. (1996). Spatial ability and G. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and measurement. (pp. 97–116). Erlbaum Associates, Inc.
  • Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25(1), 69-94. https://doi.org/10.1007/s10648-012-9215-x
  • Martin-Dorta, N., Sanchez-Berriel, I., Bravo, M., Hernandez, J., Saorin, J. S., & Contero, M. (2014). Virtual Blocks: A serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications, 73(3), 1575-1595. https://doi.org/10.1007/s11042-013-1652-0
  • Martin-Gutiérrez, J., Saorín, J., Martin-Dorta, N., & Contero, M. (2009). Do video games improve spatial abilities of engineering students? International Journal of Engineering Education, 25(6), 1194-1204.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86(5), 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  • Millî Eğitim Bakanlığı [MEB]. (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar). Ankara: MEB Talim ve Terbiye Kurulu Başkanlığı Yayınları. https://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=329
  • Okagaki, L. R., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescents. Journal of Applied Developmental Psychology, 15(1), 33-58. https://doi.org/10.1016/0193-3973(94)90005-1
  • Olgun, B. (2016). Preservice mathematics teachers solving word problems: Visual-spatial abilities, use of representations, and types of mathematical thinking (Tez No: 435137) [Yüksek lisans tezi, Boğaziçi Üniversitesi-İstanbul]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 3(1), 1-10. https://doi.org/10.1501/0003624
  • Özcan, K. V., Akbay, M., & Karakuş, T. (2016). Üniversite öğrencilerinin oyun oynama alışkanlıklarının uzamsal becerilerine etkisi. Kastamonu Eğitim Dergisi, 24(1), 37-52.
  • Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational reasoning. The Journal of Mathematical Behavior, 48, 137-151. https://doi.org/10.1016/j.jmathb.2017.08.003
  • Patton, M. Q. (2014). Nitel araştırma ve değerlendirme yöntemleri (3. Baskıdan çeviri) (M. Bütün ve S. B. Demir, Çev. Haz.) Pegem Akademi.
  • Pavlovičová, G., Bočková, V., & Laššová, K. (2022). Spatial ability and geometric thinking of the students of teacher training for primary education. TEM Journal, 11(1), 388-395. https://doi.org/10.18421/tem111-49
  • Polat, K., Oflaz, G., & Akgün, L. (2019). Görsel ispat becerisinin, van Hiele geometrik düşünme düzeyleri ve uzamsal yetenek ile ilişkisi. Erciyes Eğitim Dergisi, 3(2), 105-122. https://doi.org/10.32433/eje.604126
  • Putri, R. O. E. (2018). Spatial skill profile of mathematics pre-service teachers. In Journal of Physics: Conference Series (Vol. 947, No. 1, p. 012065). IOP Publishing.
  • Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson, & W. N. Coulombe (Vol. Eds.), Proceedings of the annual meeting of the psychology of mathematics education – North America. (Vol. 1, pp. 298–304). North Carolina State University.
  • Sarı, M. H. (2016). Uzamsal beceri ve uzamsal kaygı arasındaki ilişki: Sınıf öğretmeni adayları üzerine bir araştırma. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(3), 646-658. https://doi.org/10.16949/turkbilmat.277877
  • Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge Univ. Press. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://dx.doi.org/10.3102/0013189X015002004
  • Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (3rd ed., pp. 443–466). Sage Publications, Inc.
  • Stalvey, H. E., & Vidakovic, D. (2015). Students’ reasoning about relationships between variables in a real-world problem. The Journal of Mathematical Behavior, 40, 192-210. https://doi.org/10.1016/j.jmathb.2015.08.002
  • Şen, E. Ö. (2021). İlköğretim matematik öğretmen adaylarının uzamsal görselleştirme ve zihnin uzamsal alışkanlıkları arasındaki ilişki. Anadolu Journal of Educational Sciences International, 11(1), 268-286. https://doi.org/10.18039/ajesi.756498
  • Şen-Zeytun, A., Çetinkaya, B., & Erbaş, A. K. (2010). Mathematics teachers’ covariational reasoning levels and predictions about students’ covariational reasoning abilities. Educational Sciences: Theory and Practice, 10(3), 1601-1612.
  • Thompson, P. W. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebraic. [Yayımlanmamış taslak], Center for Research in Mathematics & Science Education, San Diego State University.
  • Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in Mathematics, 25(3), 165-208. https://doi.org/10.1007/BF01273861
  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2-3), 229-274. https://doi.org/10.1007/BF01273664
  • Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.
  • Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byerley, C. (2017). Covariational reasoning among US and South Korean secondary mathematics teachers. The Journal of Mathematical Behavior, 48(1), 95-111. http://dx.doi.org/10.1016/j.jmathb.2017.08.001
  • Turgut, M., Cantürk-Günhan, B., & Yılmaz, S. (2009). Uzamsal yetenek hakkında bir bilgi seviyesi incelenmesi. e-Journal of New World Sciences Academy, 4(2), 317-326.
  • Turğut, M. (2010). Teknoloji destekli lineer cebir öğretiminin ilköğretim matematik öğretmen adaylarının uzamsal yeteneklerine etkisi (Tez No: 265541) [Doktora tezi, Dokuz Eylül Üniversitesi-İzmir]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Turğut, M., & Yenilmez, K. (2012). Matematik öğretmeni adaylarının uzamsal görselleştirme becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Turğut, M., Yenilmez, K., & Balbağ, M. Z. (2017). Öğretmen adaylarının mantıksal ve uzamsal düşünme becerileri: Bölüm, cinsiyet ve akademik performansın etkisi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 1(41), 265-283. https://doi.org/10.21764/efd.13098
  • Ulusoy, F. (2020). Öğretmen adaylarının iki niceliğin eş zamanlı değişimini içeren dinamik fonksiyonel durumlar için oluşturdukları grafik temsilleri. Eğitimde Nitel Araştırmalar Dergisi – Journal of Qualitative Research in Education, 8(2), 462-488. https://doi.org/10.14689/issn.2148-624.1.8c.2s.3m
  • Ünal, H., Jakubowski, E., & Corey, D. (2009). Differences in learning geometry among high and low spatial ability pre-service mathematics teachers. International Journal of Mathematical Education in Science and Technology, 40(8), 997-1012. https://doi.org/10.1080/00207390902912852
  • Yavuz-Mumcu, H., & Yıldız, S. (2015). Uzamsal düşünmeyi destekleyici web-tabanlı öğretim materyali geliştirme, uygulama ve değerlendirilmesi. İlköğretim Online, 14(4), 1290-1306. https://doi.org/10.17051/io.2015.48587
  • Yazgan, Y., & Kozaklı-Ülger, T. (2022). Matematik öğretmen adaylarının cebirsel, uzamsal, olasılıksal ve orantısal muhakemedeki başarı düzeylerinin karşılaştırılması. Turkish Studies-Educational Sciences, 17(3), 485-499. http://dx.doi.org/10.7827/TurkishStudies.-62371
  • Yemen-Karpuzcu, S., Ulusoy, F., & Işıksal-Bostan, M. (2017). Prospective middle school mathematics teachers’ covariational reasoning for interpreting dynamic events during peer interactions. International Journal of Science and Mathematics Education, 15, 89-108. https://doi.org/10.1007/s10763-015-9668-8
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41), 498-508.
  • Yolcu, B., & Kurtuluş, A. (2010). 6. sınıf öğrencilerinin uzamsal görselleştirme yeteneklerini geliştirme üzerine bir çalışma. İlköğretim Online, 9(1), 256-274.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Muhammet Doruk 0000-0003-3085-1706

Fikret Cihan 0000-0001-8783-4136

Erken Görünüm Tarihi 13 Aralık 2024
Yayımlanma Tarihi 21 Aralık 2024
Gönderilme Tarihi 15 Haziran 2024
Kabul Tarihi 13 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Doruk, M., & Cihan, F. (2024). Farklı Uzamsal Akıl Yürütme Düzeyindeki İlköğretim Matematik Öğretmeni Adaylarının Kovaryasyonel Akıl Yürütme Becerileri. Bayburt Eğitim Fakültesi Dergisi, 19(44), 2804-2834. https://doi.org/10.35675/befdergi.1501689