In this study, we
propose a classification method based on normalised Hamming pseudo-similarity
of fuzzy parameterized fuzzy soft matrices (fpfs-matrices). We then
compare the proposed method with Fuzzy Soft Set Classifier (FSSC), FussCyier,
Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and Fuzzy
k-Nearest Neighbor (Fuzzy kNN) in terms of the performance criterions
(accuracy, precision, recall, and F-measure) and running time by using four
medical data sets in the UCI machine learning repository. The results show that
the proposed method performs better than FSSC, FussCyier, HDFSSC, and Fuzzy kNN
for “Breast Cancer Wisconsin (Diagnostic)”, “Immunotherapy”, “Pima Indian
Diabetes”, and “Statlog Heart”.
Fuzzy Sets Soft Sets fpfs-Matrices Similarity Measure Data Classification
The authors thank Dr Uğur Erkan for technical support.
Birincil Dil | İngilizce |
---|---|
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2019 |
Kabul Tarihi | 25 Aralık 2019 |
Yayımlandığı Sayı | Yıl 2019 |