Araştırma Makalesi
BibTex RIS Kaynak Göster

The Novel HEWMA Exponential Type Mean Estimator under Ranked Set Sampling

Yıl 2025, Cilt: 9 Sayı: 2, 53 - 63, 30.09.2025
https://doi.org/10.30516/bilgesci.1669552

Öz

Introduction
This study introduces a novel HEWMA-based memory-type exponential estimator for Ranked Set Sampling (RSS). The proposed estimator combines HEWMA control chart statistics with the exponential ratio estimator to enhance efficiency. By incorporating control chart statistics, memory-type estimators improve estimation accuracy by using both the current sample's mean and past mean(s), if available. This method is particularly beneficial for time-dependent repeated survey data or data collected from the same population at different time points.

Material and Methods
The proposed estimator's performance is evaluated through simulation studies using synthetic datasets, which simulate various scenarios with different correlation coefficients. An empirical study is also conducted using real-world data with a distinct structure. The evaluation focuses on the estimator's efficiency, considering factors such as sample size, correlation, and the number of past means incorporated.

Results
The simulation results demonstrate that incorporating at least one past sample mean value significantly enhances efficiency. Moreover, the estimator's effectiveness improves as both the correlation between samples and the number of old means (T) increase. The weight parameters of the HEWMA estimator play a critical role in determining its performance, with optimal results observed at low to medium correlation levels. The estimator consistently outperforms the existing alternatives in the real data analysis.

Discussion
The proposed HEWMA-based memory-type exponential estimator offers a more efficient alternative to the EWMA-type ratio estimator in the RSS method. The findings highlight the importance of selecting appropriate HEWMA weight parameters based on sample size and correlation. This approach substantially improves estimation accuracy, especially in time-dependent and longitudinal data scenarios. The proposed estimator performs particularly well under low to medium correlation conditions, and its applicability to real-world data further supports its practical utility.

Etik Beyan

N/A

Destekleyen Kurum

N/A

Proje Numarası

-

Kaynakça

  • Alomair, M. A., & Shahzad, U. (2023). Compromised-imputation and EWMA-based memory-type mean estimators using quantile regression. Symmetry, 15(10), 1888. https://doi.org/10.3390/sym15101888
  • Alomair, A. M., & Iftikhar, S. (2024). Calibrated EWMA estimators for time-scaled surveys with diverse applications. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e31030
  • Aslam, I., Amin, M. N., Mahmood, A., & Sharma, P. (2024). New memory-based ratio estimator in survey sampling. Natural and Applied Sciences International Journal (NASIJ), 5(1), 168-181. https://doi.org/10.47264/idea.nasij/5.1.11
  • Aslam, I., Noor-ul-Amin, M., Hanif, M., & Sharma, P. (2023). Memory type ratio and product estimators under ranked-based sampling schemes. Communications in Statistics-Theory and Methods, 52(4), 1155-1177. https://doi.org/10.1080/03610926.2021.1924784
  • Aslam, I., Noor-ul-Amin, M., Yasmeen, U., & Hanif, M. (2020). Memory type ratio and product estimators in stratified sampling. Journal of Reliability and Statistical Studies, 1-20. https://doi.org/10.13052/jrss0974-8024.1311
  • Bhushan, S., Kumar, A., Alrumayh, A., Khogeer, H. A., & Onyango, R. (2022). Evaluating the performance of memory type logarithmic estimators using simple random sampling. Plos one, 17(12), e0278264. https://doi.org/10.1371/journal.pone.0278264
  • Cingi, H., & Kadilar, C. (2009). Advances in sampling theory-ratio method of estimation. Bentham Science Publishers. https://doi.org/10.2174/97816080501231090101
  • Barbak, A. (2023). Citizen-Centered Public Security in Turkey: Policy and Practice. In Citizen-Centered Public Policy Making in Turkey (pp. 447-469). Cham: Springer International Publishing. https://trafik.gov.tr/kurumlar/trafik.gov.tr/04-Istatistik/Aylik/202412/Aralik_2024.pdf (Accessed 03 April 2025).
  • Haq, A. (2013). A new hybrid exponentially weighted moving average control chart for monitoring process mean. Quality and Reliability Engineering International, 29(7), 1015-1025. https://doi.org/10.1002/qre.1453
  • Kadilar, C., Unyazici, Y., & Cingi, H. (2009). Ratio estimator for the population mean using ranked set sampling. Statistical Papers, 50(2), 301-309. https://doi.org/10.1007/s00362-007-0079-y
  • Koçyiğit, E. G. (2025). Using past sample means in exponential ratio and regression type estimators under a simple random sampling. Soft Computing, 29(3), 1389-1406. https://doi.org/10.1007/s00500-025-10408-2
  • Kumar, S., Chhaparwal, P., Kumar, K., & Kumar, P. (2024). Generalized memory-type estimators for time-based surveys: simulation experience and empirical results with birth weight dataset. Life Cycle Reliability and Safety Engineering, 13(1), 15-23. https://doi.org/10.1007/s41872-023-00239-1
  • Kumar, A., & Bhushan, S. (2025). Logarithmic imputation techniques for temporal surveys: a memory-based approach explored through simulation and real-life applications. Quality & Quantity, 1-25. https://doi.org/10.1007/s11135-025-02096-9
  • Kumari, M., Sharma, P., Singh, P., & Ozel, G. (2025). Enhanced Mean Estimation Using Memory Type Estimators with Dual Auxiliary Variables: Accepted-January 2025. REVSTAT-Statistical Journal. https://doi.org/00.00000/revstat.v00i0.000
  • Kumar, A., Emam, W., & Tashkandy, Y. (2024). Memory type general class of estimators for population variance under simple random sampling. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e36090
  • McIntyre, G. (2005). A method for unbiased selective sampling, using ranked sets. The American Statistician, 59(3), 230-232.
  • Shahzad, N., ZAIDI, A., Zia, S., Derasit, Z., & Shahzad, N. (2022). Memory Type Estimator Of Population Mean Using Exponentially Weighted Moving Averages In Two-Phase Sampling. Journal of Positive School Psychology, 6(10).
  • Sharma, P., Singh, P., Kumari, M., Singh, R. (2024). Estimation Procedures for Population Mean using EWMA for Time Scaled Survey. Sankhya B, 1-26. https://doi.org/10.1007/s13571-024-00347-7
  • Singh, G. N., Bhattacharyya, D., Bandyopadhyay, A., & Khalid, M. (2021). Study of a memory type shrinkage estimator of population mean in quality control process. IEEE Access, 9, 161555-161564. https://doi.org/161555-161564. 10.1109/ACCESS.2021.3132686
  • Singh, P., Sharma, P., & Maurya, P. (2024). Enhancing accuracy in population mean estimation with advanced memory type exponential estimators. Journal of Reliability and Statistical Studies, 417-434. https://doi.org/10.13052/jrss0974-8024.1728
  • Qureshi, M. N., Tariq, M. U., & Hanif, M. (2024). Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys. Communications in Statistics-Simulation and Computation, 53(3), 1484-1493. https://doi.org/10.1080/03610918.2022.2050390
  • Roberts, J. M., Arth, M. J., & Bush, R. R. (1959). Games in culture. American anthropologist, 61(4), 597-605.
  • Tariq, M. U., Qureshi, M. N., Alamri, O. A., Iftikhar, S., Alsaedi, B. S., & Hanif, M. (2024). Variance estimation using memory type estimators based on EWMA statistic for time scaled surveys in stratified sampling. Scientific Reports, 14(1), 26700. https://doi.org/10.1038/s41598-024-76953-2
  • Turkish Statistical Institute Motor Vehicle Statistics. (2025). Accessed Date: 28.03.2025. https://biruni.tuik.gov.tr/medas/?kn=89&locale=tr
  • Yadav, S. K., Vishwakarma, G. K., Varshney, R., & Pal, A. (2023). Improved memory type product estimator for population mean in stratified random sampling under linear cost function. SN Computer Science, 4(3), 235. https://doi.org/10.1007/s42979-023-01673-9

Sıralı Küme Örneklemesi Altında Yeni HEWMA Üstel Ortalama Tahmin Edici

Yıl 2025, Cilt: 9 Sayı: 2, 53 - 63, 30.09.2025
https://doi.org/10.30516/bilgesci.1669552

Öz

Giriş
Bu çalışma, Sıralı Küme Örneklemesi (SKÖ) için yeni bir HEWMA tabanlı bellek tipi üstel tahmin ediciyi tanıtmaktadır. Önerilen tahmin edici, verimliliği artırmak için HEWMA kontrol çizelgesi istatistiklerini üstel oran tahmin edicisiyle birleştirir. Kontrol çizelgesi istatistiklerini dahil ederek, bellek tipi tahmin ediciler, mevcut örneklem ortalamasını ve varsa geçmiş ortalamaları kullanarak tahmin doğruluğunu artırır. Bu yöntem, özellikle zamana bağlı tekrarlanan anket verileri veya aynı popülasyondan farklı zaman noktalarında toplanan veriler için faydalıdır.

Malzeme ve Yöntemler
Önerilen tahmin edicinin performansı, farklı korelasyon katsayılarına sahip çeşitli senaryoları simüle eden sentetik veri kümeleri kullanılarak simülasyon çalışmaları yoluyla değerlendirilir. Ayrıca, belirgin bir yapıya sahip gerçek dünya verileri kullanılarak bir ampirik çalışma yürütülür. Değerlendirme, örneklem büyüklüğü, korelasyon ve dahil edilen geçmiş ortalamaların sayısı gibi faktörleri göz önünde bulundurarak tahmin edicinin verimliliğine odaklanır.

Sonuçlar
Simülasyon sonuçları, en az bir geçmiş örnek ortalama değerinin dahil edilmesinin verimliliği önemli ölçüde artırdığını göstermektedir. Dahası, tahmincinin etkinliği hem örnekler arasındaki korelasyon hem de eski ortalamaların (T) sayısı arttıkça iyileşmektedir. HEWMA tahmincisinin ağırlık parametreleri, performansını belirlemede kritik bir rol oynamaktadır ve düşük ila orta korelasyon seviyelerinde en iyi sonuçlar gözlemlenmektedir. Önerilen tahmin edici, gerçek veri analizinde mevcut alternatiflerden sürekli olarak daha iyi performans göstermektedir.

Tartışma
Önerilen HEWMA tabanlı bellek tipi üstel tahminci, SKÖ yönteminde EWMA tipi oran tahmincisine göre daha verimli bir alternatif sunmaktadır. Bulgular, örneklem büyüklüğü ve korelasyona dayalı uygun HEWMA ağırlık parametrelerinin seçilmesinin önemini vurgulamaktadır. Bu yaklaşım, özellikle zamana bağlı ve uzunlamasına veri senaryolarında tahmin doğruluğunu önemli ölçüde artırmaktadır. Önerilen tahminci, özellikle düşük ila orta korelasyon koşulları altında iyi performans göstermektedir ve gerçek dünya verilerine uygulanabilirliği, pratik faydasını daha da desteklemektedir.

Etik Beyan

N/A

Destekleyen Kurum

N/A

Proje Numarası

-

Kaynakça

  • Alomair, M. A., & Shahzad, U. (2023). Compromised-imputation and EWMA-based memory-type mean estimators using quantile regression. Symmetry, 15(10), 1888. https://doi.org/10.3390/sym15101888
  • Alomair, A. M., & Iftikhar, S. (2024). Calibrated EWMA estimators for time-scaled surveys with diverse applications. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e31030
  • Aslam, I., Amin, M. N., Mahmood, A., & Sharma, P. (2024). New memory-based ratio estimator in survey sampling. Natural and Applied Sciences International Journal (NASIJ), 5(1), 168-181. https://doi.org/10.47264/idea.nasij/5.1.11
  • Aslam, I., Noor-ul-Amin, M., Hanif, M., & Sharma, P. (2023). Memory type ratio and product estimators under ranked-based sampling schemes. Communications in Statistics-Theory and Methods, 52(4), 1155-1177. https://doi.org/10.1080/03610926.2021.1924784
  • Aslam, I., Noor-ul-Amin, M., Yasmeen, U., & Hanif, M. (2020). Memory type ratio and product estimators in stratified sampling. Journal of Reliability and Statistical Studies, 1-20. https://doi.org/10.13052/jrss0974-8024.1311
  • Bhushan, S., Kumar, A., Alrumayh, A., Khogeer, H. A., & Onyango, R. (2022). Evaluating the performance of memory type logarithmic estimators using simple random sampling. Plos one, 17(12), e0278264. https://doi.org/10.1371/journal.pone.0278264
  • Cingi, H., & Kadilar, C. (2009). Advances in sampling theory-ratio method of estimation. Bentham Science Publishers. https://doi.org/10.2174/97816080501231090101
  • Barbak, A. (2023). Citizen-Centered Public Security in Turkey: Policy and Practice. In Citizen-Centered Public Policy Making in Turkey (pp. 447-469). Cham: Springer International Publishing. https://trafik.gov.tr/kurumlar/trafik.gov.tr/04-Istatistik/Aylik/202412/Aralik_2024.pdf (Accessed 03 April 2025).
  • Haq, A. (2013). A new hybrid exponentially weighted moving average control chart for monitoring process mean. Quality and Reliability Engineering International, 29(7), 1015-1025. https://doi.org/10.1002/qre.1453
  • Kadilar, C., Unyazici, Y., & Cingi, H. (2009). Ratio estimator for the population mean using ranked set sampling. Statistical Papers, 50(2), 301-309. https://doi.org/10.1007/s00362-007-0079-y
  • Koçyiğit, E. G. (2025). Using past sample means in exponential ratio and regression type estimators under a simple random sampling. Soft Computing, 29(3), 1389-1406. https://doi.org/10.1007/s00500-025-10408-2
  • Kumar, S., Chhaparwal, P., Kumar, K., & Kumar, P. (2024). Generalized memory-type estimators for time-based surveys: simulation experience and empirical results with birth weight dataset. Life Cycle Reliability and Safety Engineering, 13(1), 15-23. https://doi.org/10.1007/s41872-023-00239-1
  • Kumar, A., & Bhushan, S. (2025). Logarithmic imputation techniques for temporal surveys: a memory-based approach explored through simulation and real-life applications. Quality & Quantity, 1-25. https://doi.org/10.1007/s11135-025-02096-9
  • Kumari, M., Sharma, P., Singh, P., & Ozel, G. (2025). Enhanced Mean Estimation Using Memory Type Estimators with Dual Auxiliary Variables: Accepted-January 2025. REVSTAT-Statistical Journal. https://doi.org/00.00000/revstat.v00i0.000
  • Kumar, A., Emam, W., & Tashkandy, Y. (2024). Memory type general class of estimators for population variance under simple random sampling. Heliyon, 10(16). https://doi.org/10.1016/j.heliyon.2024.e36090
  • McIntyre, G. (2005). A method for unbiased selective sampling, using ranked sets. The American Statistician, 59(3), 230-232.
  • Shahzad, N., ZAIDI, A., Zia, S., Derasit, Z., & Shahzad, N. (2022). Memory Type Estimator Of Population Mean Using Exponentially Weighted Moving Averages In Two-Phase Sampling. Journal of Positive School Psychology, 6(10).
  • Sharma, P., Singh, P., Kumari, M., Singh, R. (2024). Estimation Procedures for Population Mean using EWMA for Time Scaled Survey. Sankhya B, 1-26. https://doi.org/10.1007/s13571-024-00347-7
  • Singh, G. N., Bhattacharyya, D., Bandyopadhyay, A., & Khalid, M. (2021). Study of a memory type shrinkage estimator of population mean in quality control process. IEEE Access, 9, 161555-161564. https://doi.org/161555-161564. 10.1109/ACCESS.2021.3132686
  • Singh, P., Sharma, P., & Maurya, P. (2024). Enhancing accuracy in population mean estimation with advanced memory type exponential estimators. Journal of Reliability and Statistical Studies, 417-434. https://doi.org/10.13052/jrss0974-8024.1728
  • Qureshi, M. N., Tariq, M. U., & Hanif, M. (2024). Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys. Communications in Statistics-Simulation and Computation, 53(3), 1484-1493. https://doi.org/10.1080/03610918.2022.2050390
  • Roberts, J. M., Arth, M. J., & Bush, R. R. (1959). Games in culture. American anthropologist, 61(4), 597-605.
  • Tariq, M. U., Qureshi, M. N., Alamri, O. A., Iftikhar, S., Alsaedi, B. S., & Hanif, M. (2024). Variance estimation using memory type estimators based on EWMA statistic for time scaled surveys in stratified sampling. Scientific Reports, 14(1), 26700. https://doi.org/10.1038/s41598-024-76953-2
  • Turkish Statistical Institute Motor Vehicle Statistics. (2025). Accessed Date: 28.03.2025. https://biruni.tuik.gov.tr/medas/?kn=89&locale=tr
  • Yadav, S. K., Vishwakarma, G. K., Varshney, R., & Pal, A. (2023). Improved memory type product estimator for population mean in stratified random sampling under linear cost function. SN Computer Science, 4(3), 235. https://doi.org/10.1007/s42979-023-01673-9
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Eda Gizem Koçyiğit 0000-0002-0774-1376

Proje Numarası -
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 3 Nisan 2025
Kabul Tarihi 7 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Koçyiğit, E. G. (2025). The Novel HEWMA Exponential Type Mean Estimator under Ranked Set Sampling. Bilge International Journal of Science and Technology Research, 9(2), 53-63. https://doi.org/10.30516/bilgesci.1669552