Araştırma Makalesi
BibTex RIS Kaynak Göster

Lossless Grounded Capacitance Multiplier Based On Two CFOAs

Yıl 2023, , 137 - 148, 31.12.2023
https://doi.org/10.47897/bilmes.1387626

Öz

A new lossless grounded capacitance multiplier (GCM) based on two current-feedback operational amplifiers (CFOAs) is proposed. The proposed circuit is built with a least number of passive elements. The capacitor is selected as grounded in the proposed circuit, while one resistor is grounded and the other is floating. The proposed GCM has low power consumption and a very large multiplying factor. The passive element matching conditions are not necessary for the designed GCM. The SPICE program is used for the simulations, and all the simulations are performed with 0.18µm CMOS technology parameters. The simulation results verify the ideal results from 10Hz to 15MHz. Further, the designed GCM is tested in the application circuit, which is a second-order passive filter. The experiments of the desgined GCM are achieved by using AD844s instead of CFOAs.

Kaynakça

  • [1] A. D. Amico, C. Di Natale, M. Mariucci, and G. Barccarani, “Active capacitance multiplication for sensor application,” 1997.
  • [2] B. Wilson, “Recent developments in current conveyors and current-mode circuits,” IEE Proc. G Circuits, Devices Syst., vol. 137, no. 2, pp. 63–77, 1990, doi: 10.1049/ip-g-2.1990.0014.
  • [3] B. Wilson, “Tutorial review trends in current conveyor and current-mode amplifier design,” Int. J. Electron., vol. 73, no. 3, pp. 573–583, Sep. 1992, doi: 10.1080/00207219208925692.
  • [4] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC design: the current-mode approach. London: The Institution of Engineering and Technology, 1993.
  • [5] F. Giuseppe and N. C. Guerrini, Low-voltage low-power CMOS current conveyors. New York, United States of America: Kluwer Academic Publishers, 2004.
  • [6] R. Senani, D. R. Bhaskar, and A. K. Singh, Current Conveyors Variants, Applications and Hardware Implementations. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-08684-2.
  • [7] G. Ferri and N. C. Guerrini, “Low-voltage low-power novel CCII topologies and applications,” in ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483), 2001, vol. 2, pp. 1095–1098. doi: 10.1109/ICECS.2001.957693.
  • [8] E. Yuce, “DO-CCII/DO-DVCC based electronically fine tunable quadrature oscillators,” J. Circuits, Syst. Comput., vol. 26, no. 2, pp. 1–17, 2017, doi: 10.1142/S0218126617500256.
  • [9] R. Verma, N. Pandey, and R. Pandey, “Capacitance characteristics behavior of 0.5 Order FC using CFOA based FC multiplier,” Adv. Electr. Electron. Eng., vol. 20, no. 1, pp. 43–56, 2022, doi: 10.15598/aeee.v20i1.3621.
  • [10] R. Verma, N. Pandey, and R. Pandey, “Novel CFOA based capacitance multiplier and its application,” AEU - Int. J. Electron. Commun., vol. 107, pp. 192–198, 2019, doi: 10.1016/j.aeue.2019.05.010.
  • [11] A. A. Khan, S. Bimal, K. K. Dey, and S. S. Roy, “Current conveyor based R- and C- multiplier circuits,” AEU - Int. J. Electron. Commun., vol. 56, no. 5, pp. 312–316, Jan. 2002, doi: 10.1078/1434-8411-54100121.
  • [12] M. Dogan and E. Yuce, “A new CFOA based grounded capacitance multiplier,” AEU - Int. J. Electron. Commun., vol. 115, p. 153034, 2020, doi: 10.1016/j.aeue.2019.153034.
  • [13] R. Arslanalp and T. Yucehan, “Capacitance multiplier design by using CFOA-,” 2015 23rd Signal Process. Commun. Appl. Conf. SIU 2015 - Proc., pp. 1393–1396, 2015, doi: 10.1109/SIU.2015.7130102.
  • [14] M. A. Al-Absi and M. T. Abuelma’atti, “A novel tunable grounded positive and negative ımpedance multiplier,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 6, pp. 924–927, 2019, doi: 10.1109/TCSII.2018.2874511.
  • [15] A. Fabre, “Gyrator implementation from commercially available transimpedance operational amplifiers,” Electron. Lett., vol. 28, no. 3, p. 263, 1992, doi: 10.1049/el:19920162.
  • [16] R. Senani, “Realization of a class of analog signal processing / signal generation circuits: novel configurations using current feedback Op-Amps,” Frequenz, vol. 52, no. 9–10, pp. 196–206, Sep. 1998, doi: 10.1515/FREQ.1998.52.9-10.196.
  • [17] E. Yuce and S. Minaei, “A modified CFOA and ıts applications to simulated ınductors, capacitance multipliers, and analog filters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 1, pp. 266–275, Feb. 2008, doi: 10.1109/TCSI.2007.913689.
  • [18] T. Yucehan and E. Yuce, “A new grounded capacitance multiplier using a single ICFOA and a grounded capacitor,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 3, pp. 729–733, 2022, doi: 10.1109/TCSII.2021.3102118.
  • [19] E. Özer, M. E. Başak, and F. Kaçar, “Realizations of lossy and lossless capacitance multiplier using CFOAs,” AEU - Int. J. Electron. Commun., vol. 127, no. August, 2020, doi: 10.1016/j.aeue.2020.153444.
  • [20] A. Toker, O. Cicekoglu, and H. Kuntman, “New active gyrator circuit suitable for frequency-dependent negative resistor implementation,” Microelectronics J., vol. 30, no. 1, pp. 59–62, Jan. 1999, doi: 10.1016/S0026-2692(98)00086-X.
  • [21] V. Stornelli, L. Safari, G. Barile, and G. Ferri, “A new VCII based grounded positive/negative capacitance multiplier,” AEU - Int. J. Electron. Commun., vol. 137, no. April, p. 153793, 2021, doi: 10.1016/j.aeue.2021.153793.
  • [22] A. Kumar, D. Singh, and D. Nand, “A novel CFDITA-based design of grounded capacitance multiplier and ıts transpose structure,” Circuits, Syst. Signal Process., vol. 41, no. 10, pp. 5319–5339, 2022, doi: 10.1007/s00034-022-02032-4.
  • [23] D. R. Bhaskar, G. Mann, and P. Kumar, “OTRA-based positive/negative grounded capacitance multiplier,” Analog Integr. Circuits Signal Process., vol. 111, no. 3, pp. 469–481, 2022, doi: 10.1007/s10470-022-02032-z.
  • [24] D. Ozenli, E. Alaybeyoglu, and H. Kuntman, “A tunable lossy grounded capacitance multiplier circuit based on VDTA for the low frequency operations,” Analog Integr. Circuits Signal Process., vol. 113, no. 2, pp. 163–170, 2022, doi: 10.1007/s10470-022-02077-0.
  • [25] D. Ozenli and E. Alaybeyoglu, “An electronically tunable CMOS implementation of capacitance multiplier employing CCCDTA,” AEU - Int. J. Electron. Commun., vol. 155, no. August, p. 154359, 2022, doi: 10.1016/j.aeue.2022.154359.
  • [26] D. Singh, D. Nand, and A. Kumar, “Newly realized grounded capacitance multiplier using single CFDITA,” 2021 7th Int. Conf. Signal Process. Commun. ICSC 2021, no. 1, pp. 362–365, 2021, doi: 10.1109/ICSC53193.2021.9673477.
  • [27] M. Shrivastava, P. Kumar, A. Raj, and D. R. Bhaskar, “Single current follower differential input transconductance amplifier based grounded lossy capacitance multiplier with large multiplication factor,” Int. J. Numer. Model. Electron. Networks, Devices Fields, no. May, pp. 1–13, 2023, doi: 10.1002/jnm.3139.
  • [28] T. Unuk and E. Yuce, “DVCC+ based ımmittance function simulators ıncluding grounded passive elements only,” J. Circuits, Syst. Comput., vol. 30, no. 15, pp. 5–14, 2021, doi: 10.1142/S0218126621502789.
  • [29] P. Moonmuang, T. Pukkalanun, and W. Tangsrirat, “Floating/grounded series/parallel R-L, R-C and L-C immittance simulators employing VDTAs and only two grounded passive elements,” AEU - Int. J. Electron. Commun., vol. 145, no. September 2021, p. 154095, 2022, doi: 10.1016/j.aeue.2021.154095.
  • [30] T. Unuk, “DVCC+ based grounded simulator suitable for capacitance multiplier and frequency dependent negative resistor,” 2023 33rd Int. Conf. Radioelektronika, pp. 1–4, 2023, doi: 10.1109/RADIOELEKTRONIKA57919.2023.10109051.
  • [31] S. Singh, Jatin, N. Pandey, and R. Pandey, “Electronically tunable grounded capacitance multiplier,” IETE J. Res., vol. 68, no. 4, pp. 2989–3000, 2022, doi: 10.1080/03772063.2020.1739573.
  • [32] P. Moonmuang, M. Faseehuddin, T. Pukkalanun, N. Herencsar, and W. Tangsrirat, “VDTA-based floating/grounded series/parallel R-L and R-C immittance simulators with a single grounded capacitor,” AEU - Int. J. Electron. Commun., vol. 160, no. September 2022, p. 154502, 2023, doi: 10.1016/j.aeue.2022.154502.
  • [33] N. Kumar, M. Kumar, and N. Pandey, “A programmable tunable active grounded and floating immittance circuit using CCTA and their applications,” Int. J. Electron., vol. 110, no. 1, pp. 73–106, 2023, doi: 10.1080/00207217.2021.2001876.
  • [34] R. J. Baker, CMOS Circuit Design, Layout and Simulation, 4th ed. Hoboken, NJ, USA: Wiley, 2019, pp. 115–116
  • [35] E. Yuce and S. Minaei, “Universal current‐mode filters and parasitic impedance effects on the filter performances,” Int. J. Circuit Theory Appl., vol. 36, no. 2, pp. 161–171, Mar. 2008, doi: 10.1002/cta.418.
  • [36] W. S. Hassanein, I. A. Awad, and A. M. Soliman, “New high accuracy CMOS current conveyors,” AEU - Int. J. Electron. Commun., vol. 59, no. 7, pp. 384–391, 2005, doi: 10.1016/j.aeue.2004.10.001.
  • [37] S. Minaei and E. Yuce, “Novel voltage-mode all-pass filter based on using DVCCs,” Circuits, Syst. Signal Process., vol. 29, no. 3, pp. 391–402, Jun. 2010, doi: 10.1007/s00034-010-9150-3.
  • [38] Analog Devices, “AD844 - 60 MHz, 2000 V/μs, Monolithic Op Amp With Quad Low Noise,” AD844 Data Sheet Rev. G, pp. 1–20, 2017, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ad844.pdf

Lossless Grounded Capacitance Multiplier Based On Two CFOAs

Yıl 2023, , 137 - 148, 31.12.2023
https://doi.org/10.47897/bilmes.1387626

Öz

A new lossless grounded capacitance multiplier (GCM) based on two current-feedback operational amplifiers (CFOAs) is proposed. The proposed circuit is built with a least number of passive elements. The capacitor is selected as grounded in the proposed circuit, while one resistor is grounded and the other is floating. The proposed GCM has low power consumption and a very large multiplying factor. The passive element matching conditions are not necessary for the designed GCM. The SPICE program is used for the simulations, and all the simulations are performed with 0.18µm CMOS technology parameters. The simulation results verify the ideal results from 10Hz to 15MHz. Further, the designed GCM is tested in the application circuit, which is a second-order passive filter. The experiments of the desgined GCM are achieved by using AD844s instead of CFOAs.

Kaynakça

  • [1] A. D. Amico, C. Di Natale, M. Mariucci, and G. Barccarani, “Active capacitance multiplication for sensor application,” 1997.
  • [2] B. Wilson, “Recent developments in current conveyors and current-mode circuits,” IEE Proc. G Circuits, Devices Syst., vol. 137, no. 2, pp. 63–77, 1990, doi: 10.1049/ip-g-2.1990.0014.
  • [3] B. Wilson, “Tutorial review trends in current conveyor and current-mode amplifier design,” Int. J. Electron., vol. 73, no. 3, pp. 573–583, Sep. 1992, doi: 10.1080/00207219208925692.
  • [4] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC design: the current-mode approach. London: The Institution of Engineering and Technology, 1993.
  • [5] F. Giuseppe and N. C. Guerrini, Low-voltage low-power CMOS current conveyors. New York, United States of America: Kluwer Academic Publishers, 2004.
  • [6] R. Senani, D. R. Bhaskar, and A. K. Singh, Current Conveyors Variants, Applications and Hardware Implementations. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-08684-2.
  • [7] G. Ferri and N. C. Guerrini, “Low-voltage low-power novel CCII topologies and applications,” in ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483), 2001, vol. 2, pp. 1095–1098. doi: 10.1109/ICECS.2001.957693.
  • [8] E. Yuce, “DO-CCII/DO-DVCC based electronically fine tunable quadrature oscillators,” J. Circuits, Syst. Comput., vol. 26, no. 2, pp. 1–17, 2017, doi: 10.1142/S0218126617500256.
  • [9] R. Verma, N. Pandey, and R. Pandey, “Capacitance characteristics behavior of 0.5 Order FC using CFOA based FC multiplier,” Adv. Electr. Electron. Eng., vol. 20, no. 1, pp. 43–56, 2022, doi: 10.15598/aeee.v20i1.3621.
  • [10] R. Verma, N. Pandey, and R. Pandey, “Novel CFOA based capacitance multiplier and its application,” AEU - Int. J. Electron. Commun., vol. 107, pp. 192–198, 2019, doi: 10.1016/j.aeue.2019.05.010.
  • [11] A. A. Khan, S. Bimal, K. K. Dey, and S. S. Roy, “Current conveyor based R- and C- multiplier circuits,” AEU - Int. J. Electron. Commun., vol. 56, no. 5, pp. 312–316, Jan. 2002, doi: 10.1078/1434-8411-54100121.
  • [12] M. Dogan and E. Yuce, “A new CFOA based grounded capacitance multiplier,” AEU - Int. J. Electron. Commun., vol. 115, p. 153034, 2020, doi: 10.1016/j.aeue.2019.153034.
  • [13] R. Arslanalp and T. Yucehan, “Capacitance multiplier design by using CFOA-,” 2015 23rd Signal Process. Commun. Appl. Conf. SIU 2015 - Proc., pp. 1393–1396, 2015, doi: 10.1109/SIU.2015.7130102.
  • [14] M. A. Al-Absi and M. T. Abuelma’atti, “A novel tunable grounded positive and negative ımpedance multiplier,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 6, pp. 924–927, 2019, doi: 10.1109/TCSII.2018.2874511.
  • [15] A. Fabre, “Gyrator implementation from commercially available transimpedance operational amplifiers,” Electron. Lett., vol. 28, no. 3, p. 263, 1992, doi: 10.1049/el:19920162.
  • [16] R. Senani, “Realization of a class of analog signal processing / signal generation circuits: novel configurations using current feedback Op-Amps,” Frequenz, vol. 52, no. 9–10, pp. 196–206, Sep. 1998, doi: 10.1515/FREQ.1998.52.9-10.196.
  • [17] E. Yuce and S. Minaei, “A modified CFOA and ıts applications to simulated ınductors, capacitance multipliers, and analog filters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 1, pp. 266–275, Feb. 2008, doi: 10.1109/TCSI.2007.913689.
  • [18] T. Yucehan and E. Yuce, “A new grounded capacitance multiplier using a single ICFOA and a grounded capacitor,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 3, pp. 729–733, 2022, doi: 10.1109/TCSII.2021.3102118.
  • [19] E. Özer, M. E. Başak, and F. Kaçar, “Realizations of lossy and lossless capacitance multiplier using CFOAs,” AEU - Int. J. Electron. Commun., vol. 127, no. August, 2020, doi: 10.1016/j.aeue.2020.153444.
  • [20] A. Toker, O. Cicekoglu, and H. Kuntman, “New active gyrator circuit suitable for frequency-dependent negative resistor implementation,” Microelectronics J., vol. 30, no. 1, pp. 59–62, Jan. 1999, doi: 10.1016/S0026-2692(98)00086-X.
  • [21] V. Stornelli, L. Safari, G. Barile, and G. Ferri, “A new VCII based grounded positive/negative capacitance multiplier,” AEU - Int. J. Electron. Commun., vol. 137, no. April, p. 153793, 2021, doi: 10.1016/j.aeue.2021.153793.
  • [22] A. Kumar, D. Singh, and D. Nand, “A novel CFDITA-based design of grounded capacitance multiplier and ıts transpose structure,” Circuits, Syst. Signal Process., vol. 41, no. 10, pp. 5319–5339, 2022, doi: 10.1007/s00034-022-02032-4.
  • [23] D. R. Bhaskar, G. Mann, and P. Kumar, “OTRA-based positive/negative grounded capacitance multiplier,” Analog Integr. Circuits Signal Process., vol. 111, no. 3, pp. 469–481, 2022, doi: 10.1007/s10470-022-02032-z.
  • [24] D. Ozenli, E. Alaybeyoglu, and H. Kuntman, “A tunable lossy grounded capacitance multiplier circuit based on VDTA for the low frequency operations,” Analog Integr. Circuits Signal Process., vol. 113, no. 2, pp. 163–170, 2022, doi: 10.1007/s10470-022-02077-0.
  • [25] D. Ozenli and E. Alaybeyoglu, “An electronically tunable CMOS implementation of capacitance multiplier employing CCCDTA,” AEU - Int. J. Electron. Commun., vol. 155, no. August, p. 154359, 2022, doi: 10.1016/j.aeue.2022.154359.
  • [26] D. Singh, D. Nand, and A. Kumar, “Newly realized grounded capacitance multiplier using single CFDITA,” 2021 7th Int. Conf. Signal Process. Commun. ICSC 2021, no. 1, pp. 362–365, 2021, doi: 10.1109/ICSC53193.2021.9673477.
  • [27] M. Shrivastava, P. Kumar, A. Raj, and D. R. Bhaskar, “Single current follower differential input transconductance amplifier based grounded lossy capacitance multiplier with large multiplication factor,” Int. J. Numer. Model. Electron. Networks, Devices Fields, no. May, pp. 1–13, 2023, doi: 10.1002/jnm.3139.
  • [28] T. Unuk and E. Yuce, “DVCC+ based ımmittance function simulators ıncluding grounded passive elements only,” J. Circuits, Syst. Comput., vol. 30, no. 15, pp. 5–14, 2021, doi: 10.1142/S0218126621502789.
  • [29] P. Moonmuang, T. Pukkalanun, and W. Tangsrirat, “Floating/grounded series/parallel R-L, R-C and L-C immittance simulators employing VDTAs and only two grounded passive elements,” AEU - Int. J. Electron. Commun., vol. 145, no. September 2021, p. 154095, 2022, doi: 10.1016/j.aeue.2021.154095.
  • [30] T. Unuk, “DVCC+ based grounded simulator suitable for capacitance multiplier and frequency dependent negative resistor,” 2023 33rd Int. Conf. Radioelektronika, pp. 1–4, 2023, doi: 10.1109/RADIOELEKTRONIKA57919.2023.10109051.
  • [31] S. Singh, Jatin, N. Pandey, and R. Pandey, “Electronically tunable grounded capacitance multiplier,” IETE J. Res., vol. 68, no. 4, pp. 2989–3000, 2022, doi: 10.1080/03772063.2020.1739573.
  • [32] P. Moonmuang, M. Faseehuddin, T. Pukkalanun, N. Herencsar, and W. Tangsrirat, “VDTA-based floating/grounded series/parallel R-L and R-C immittance simulators with a single grounded capacitor,” AEU - Int. J. Electron. Commun., vol. 160, no. September 2022, p. 154502, 2023, doi: 10.1016/j.aeue.2022.154502.
  • [33] N. Kumar, M. Kumar, and N. Pandey, “A programmable tunable active grounded and floating immittance circuit using CCTA and their applications,” Int. J. Electron., vol. 110, no. 1, pp. 73–106, 2023, doi: 10.1080/00207217.2021.2001876.
  • [34] R. J. Baker, CMOS Circuit Design, Layout and Simulation, 4th ed. Hoboken, NJ, USA: Wiley, 2019, pp. 115–116
  • [35] E. Yuce and S. Minaei, “Universal current‐mode filters and parasitic impedance effects on the filter performances,” Int. J. Circuit Theory Appl., vol. 36, no. 2, pp. 161–171, Mar. 2008, doi: 10.1002/cta.418.
  • [36] W. S. Hassanein, I. A. Awad, and A. M. Soliman, “New high accuracy CMOS current conveyors,” AEU - Int. J. Electron. Commun., vol. 59, no. 7, pp. 384–391, 2005, doi: 10.1016/j.aeue.2004.10.001.
  • [37] S. Minaei and E. Yuce, “Novel voltage-mode all-pass filter based on using DVCCs,” Circuits, Syst. Signal Process., vol. 29, no. 3, pp. 391–402, Jun. 2010, doi: 10.1007/s00034-010-9150-3.
  • [38] Analog Devices, “AD844 - 60 MHz, 2000 V/μs, Monolithic Op Amp With Quad Low Noise,” AD844 Data Sheet Rev. G, pp. 1–20, 2017, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/ad844.pdf
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analog Elektronik ve Arayüzler/ Bağdaştıcılar
Bölüm Makaleler
Yazarlar

Tolga Yücehan 0000-0002-8835-0907

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 7 Kasım 2023
Kabul Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yücehan, T. (2023). Lossless Grounded Capacitance Multiplier Based On Two CFOAs. International Scientific and Vocational Studies Journal, 7(2), 137-148. https://doi.org/10.47897/bilmes.1387626
AMA Yücehan T. Lossless Grounded Capacitance Multiplier Based On Two CFOAs. ISVOS. Aralık 2023;7(2):137-148. doi:10.47897/bilmes.1387626
Chicago Yücehan, Tolga. “Lossless Grounded Capacitance Multiplier Based On Two CFOAs”. International Scientific and Vocational Studies Journal 7, sy. 2 (Aralık 2023): 137-48. https://doi.org/10.47897/bilmes.1387626.
EndNote Yücehan T (01 Aralık 2023) Lossless Grounded Capacitance Multiplier Based On Two CFOAs. International Scientific and Vocational Studies Journal 7 2 137–148.
IEEE T. Yücehan, “Lossless Grounded Capacitance Multiplier Based On Two CFOAs”, ISVOS, c. 7, sy. 2, ss. 137–148, 2023, doi: 10.47897/bilmes.1387626.
ISNAD Yücehan, Tolga. “Lossless Grounded Capacitance Multiplier Based On Two CFOAs”. International Scientific and Vocational Studies Journal 7/2 (Aralık 2023), 137-148. https://doi.org/10.47897/bilmes.1387626.
JAMA Yücehan T. Lossless Grounded Capacitance Multiplier Based On Two CFOAs. ISVOS. 2023;7:137–148.
MLA Yücehan, Tolga. “Lossless Grounded Capacitance Multiplier Based On Two CFOAs”. International Scientific and Vocational Studies Journal, c. 7, sy. 2, 2023, ss. 137-48, doi:10.47897/bilmes.1387626.
Vancouver Yücehan T. Lossless Grounded Capacitance Multiplier Based On Two CFOAs. ISVOS. 2023;7(2):137-48.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License