Araştırma Makalesi
BibTex RIS Kaynak Göster

A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses

Yıl 2025, Cilt: 9 Sayı: 1, 145 - 160, 30.06.2025
https://doi.org/10.47897/bilmes.1704235

Öz

Ever since they were first discovered, Schiff bases have been the subject of much attention due to their functional chemical character and intensive interdisciplinary applications, particularly in medicinal chemistry. The compounds are gaining interest due to their ability to provide stable coordination complexes and exhibit a vast array of biological activities, such as antimicrobial, anticancer, and antiviral activities. In this contribution, the structure of 2-[(4-hydroxyphenyl)iminomethyl]thiophene, (I), a compound previously described in the literature, was ascertained with great accuracy employing up-to-date quantum chemical calculations to better understand its electronic behavior and reactivity. In addition, the antiviral, anticancer, and anti-Alzheimer activity of the compound was thoroughly investigated employing a battery of in vitro and computational assays. The results proved the active character of the compound against various biological targets, and that it was a multiradial drug candidate. Furthermore, ADME-Tox properties were examined to evaluate the pharmacokinetic profile and toxicity of the compound. Favorable ADME properties and a low likelihood of toxicity highlight the molecule’s suitability for continued development. The research showed the chemical stability of the molecule, its high hyperconjugation and strong intramolecular stability as factors contributing to its overall strength. These structural features also hold out promise for drug development since they can lead to increased efficacy and long-lasting activity in biological systems. Furthermore, molecular docking simulations corroborated the efficacy of the compound as a potential ligand that could interact with key biological macromolecules, rendering it a highly effective ligand with high binding affinity. This also contributes to its potential as a lead compound for new therapeutic drugs. Lastly, this research not only describes the structure and properties of (I), but also provides a pragmatic window through its pharmacological potential, worthy of experimental and clinical studies to explore fully its promise in drug discovery.

Kaynakça

  • H. Schiff, “Investigations on salicyl derivatives,” Justus Liebigs Annalen der Chemie, vol. 150, no. 2, pp. 193-200, 1869.
  • R. Meena, P. Meena, A. Kumari, N. Sharma, and N. Fahmi, “Schiff Base in Organic, Inorganic and Physical Chemistry,” in Schiff Bases and Their Metal Complexes: Synthesis, Structural Characteristics and Applications, T. Akitsu, Ed. IntechOpen, 2023. doi: 10.5772/intechopen.108396.
  • Z. Hussain, E. Yousif, A. Ahmed, and A. Altaie, “Synthesis and characterization of Schiff’s bases of sulfamethoxazole,” Organic and Medicinal Chemistry Letters, vol. 4, no. 1, pp. 1-4, 2014. doi: 10.1186/2191-2858-4-1.
  • S. L. Sangle, “Introduction to Schiff base,” in Schiff Base in Organic, Inorganic and Physical Chemistry, T. Akitsu, Ed. IntechOpen, 2022. doi: 10.5772/intechopen.104134.
  • S. K. Raju, A. Settu, A. Thiyagarajan, D. Rama, P. Sekar, and S. Kumar, “Biological applications of Schiff bases: An overview,” GSC Biological and Pharmaceutical Sciences, vol. 21, no. 3, pp. 203-215, 2022. doi: 10.30574/gscbps.2022.21.3.0484.
  • A. M. Abu-Dief, M. Ibrahim, and A. Mohamed, “A review on versatile applications of transition metal complexes incorporating Schiff bases,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 4, no. 2, pp. 119-133, 2015. doi: 10.1016/j.bjbas.2015.05.004
  • F. Tisato, F. Refosco, and G. Bandoli, “Structural survey of technetium complexes,” Coordination Chemistry Reviews, vol. 135–136, pp. 325-397, 1994. doi: 10.1016/0010-8545(94)80072-3
  • A. L. Berhanu, M. Gaurav, I. Mohiuddin, A. K. Malik, J. S. Aulakh, V. Kumar, and K. H. Kim, “A review of the applications of Schiff bases as optical chemical sensors,” Trends in Analytical Chemistry, vol. 116, pp. 74-91, 2019. doi: 10.1016/j.trac.2019.04.025
  • S. A. Dalia, F. Afsan, M. S. Hossain, M. N. Khan, C. Zakaria, M. E. Zahan, and M. Ali, “A short review on chemistry of Schiff base metal complexes and their catalytic application,” International Journal of Chemical Studies, vol. 6, no. 3, pp. 2859-2866, 2018.
  • C. C. Ersanlı and S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound,” International Scientific and Vocational Studies Journal, vol. 8, no. 2, pp. 162-177, 2024. doi: 10.47897/bilmes.1573560
  • H. M. Alkahtani, A. A. Almehizia, M. A. Al-Omar, A. J. Obaidullah, A. A. Zen, A. S. Hassan, and W. M. Aboulthana, “In vitro evaluation and bioinformatics analysis of Schiff bases bearing pyrazole scaffold as bioactive agents: Antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities,” Molecules, vol. 28, no. 20, p. 7125, 2023. doi: 10.3390/molecules28207125
  • T. Alorini, I. Daoud, A. N. Al-Hakimi, F. Alminderej, and A. E. Albadri, “An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes,” Research on Chemical Intermediates, vol. 49, no. 4, pp. 1701-1730, 2023. doi: 10.1007/s11164-022-04946-1
  • Y. Gou, J. Li, B. Fan, B. Xu, M. Zhou, and F. Yang, “Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents,” European Journal of Medicinal Chemistry, vol. 134, pp. 207-217, 2017. doi: 10.1016/j.ejmech.2017.03.022
  • M. Köse, G. Ceyhan, M. Tümer, İ. Demirtaş, İ. Gönül, and V. McKee, “Monodentate Schiff base ligands: Structural characterization, photoluminescence, anticancer, electrochemical, and sensor properties,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 137, pp. 477-485, 2015. doi: 10.1016/j.saa.2014.08.124
  • A. Garg, D. Dureja, A. Vijeata, G. R. Chaudhary, S. Berry, S. Chaudhary, and A. Bhalla, “Synthesis of novel α-carboxylate-β-bismethylsulfanyl pyrazolyl Schiff base derivatives: Targeting DNA gyrase for antibacterial activity,” Journal of Molecular Structure, vol. 1337, p. 141954, 2025. doi: 10.1016/j.molstruc.2025.141954
  • N. Isalm et al., “Exploration of the synthesis, crystal structure, Hirshfeld surface analysis, binding properties, antibacterial activities, and molecular docking of a Schiff base nickel(II) complex,” Journal of Molecular Structure, vol. 140294, 2024. doi: 10.1016/j.molstruc.2024.140294
  • H. A. Hasan, S. M. Mahdi, and H. A. Ali, “Tetradentate azo Schiff base Ni(II), Pd(II), and Pt(II) complexes: Synthesis, spectral properties, antibacterial activity, cytotoxicity, and docking studies,” Bulletin of the Chemical Society of Ethiopia, vol. 38, no. 1, pp. 99-111, 2024. doi: 10.4314/bcse.v38i1.7
  • D. Pardaeva et al., “Spectral characterization and antibacterial, antifungal, antiviral activities of salicyl-based new Schiff bases and their Co(II), Ni(II), Cu(II), Zn(II), and Pd(II) complexes,” Revue Roumaine de Chimie, vol. 69, no. 1-2, pp. 83-96, 2024. doi: 10.33224/rrch.2024.69.1-2.10
  • M. Azzouzi et al., “Synthesis, crystal structure, and antiviral evaluation of new imidazopyridine-Schiff base derivatives: In vitro and in silico anti-HIV studies,” RSC Advances, vol. 14, no. 50, pp. 36902–36918, 2024. doi: 10.1039/d4ra07561g
  • R. H. Taha et al., “Impact of Fe(III) and Ce(III) ions on pharmacological properties of novel Schiff base ligand: Anticancer, antiviral, antioxidant, antifungal investigations and computational insights,” Journal of Molecular Liquids, vol. 427, p. 127382, 2025. doi: 10.1016/j.molliq.2024.127382
  • M. Sarfraz et al., “New pyrimidinone-bearing aminomethylenes and Schiff bases as potent antioxidant, antibacterial, SARS-CoV-2, and COVID-19 main protease (MPro) inhibitors: Design, synthesis, bioactivities, and computational studies,” ACS Omega, vol. 9, no. 24, pp. 25730-25747, 2024. doi: 10.1021/acsomega.3c09393
  • M. Yılmaz, “Cancer epidemiology,” in Cancer Genetics and Molecular Biology, İ. Değirmenci, Ed. Istanbul: Nobel, 2022, pp. 3-25.
  • Özbayer, “Carcinogenesis,” in Cancer Genetics and Molecular Biology, İ. Değirmenci, Ed. Istanbul: Nobel, 2022, pp. 29-47.
  • R. Robinson, Y. M. Wu, and S. F. Lin, “The protein tyrosine kinase family of the human genome,” Oncogene, vol. 19, no. 49, pp. 5548-5557, 2000. doi: 10.1038/sj.onc.1204082
  • F. Inizan, M. Hanna, M. Stolyarchuk, I. Chauvot de Beauchêne, and L. Tchertanov, “The first 3D model of the full-length KIT cytoplasmic domain reveals a new look for an old receptor,” Scientific Reports, vol. 10, no. 1, p. 5401, 2020. doi: 10.1038/s41598-020-62352-2
  • P. Besmer, J. Murphy, P. George, et al., “A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family,” Nature, vol. 320, pp. 415-421, 1986. doi: 10.1038/320415a0
  • D. Mol, D. R. Dougan, T. R. Schneider, R. J. Skene, M. L. Kraus, D. N. Scheibe, et al., “Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase,” J. Biol. Chem., vol. 279, no. 30, pp. 31655-31663, 2004. doi: 10.2210/pdb1t46/pdb
  • Sheikh, T. Tran, S. Vranic, A. Levy, and R. D. Bonfil, “Role and significance of c-KIT receptor tyrosine kinase in cancer: A review,” Bosn. J. Basic Med. Sci., vol. 22, no. 5, p. 683, 2022. doi: 10.17305/bjbms.2022.7185
  • J. Lennartsson and L. Rönnstrand, “Stem cell factor receptor/c-Kit: From basic science to clinical implications,” Physiol. Rev., vol. 92, no. 4, pp. 1619-1649, 2012. doi: 10.1152/physrev.00046.2011
  • M. Abbaspour Babaei, B. Kamalidehghan, M. Saleem, H. Z. Huri, and F. Ahmadipour, “Receptor tyrosine kinase (c-Kit) inhibitors: A potential therapeutic target in cancer cells,” Drug Des. Devel. Ther., vol. 10, pp. 2443-2459, 2016. doi: 10.2147/DDDT.S106527
  • J. A. Curtin, K. Busam, D. Pinkel, and B. C. Bastian, “Somatic activation of KIT in distinct subtypes of melanoma,” J. Clin. Oncol., vol. 24, no. 26, pp. 4340-4346, 2006. doi: 10.1200/JCO.2005.03.9199
  • A. Beghini, C. B. Ripamonti, R. Cairoli, G. Cazzaniga, P. Colapietro, F. Elice, et al., “KIT activating mutations: Incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication,” Haematologica, vol. 89, no. 8, pp. 920-925, 2004. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/15339674
  • D. Malvy, A. K. McElroy, H. de Clerck, S. Günther, and J. van Griensven, “Ebola virus disease,” Lancet, vol. 393, no. 10174, pp. 936-948, 2019. doi: 10.1016/S0140-6736(18)33132-5
  • T. Q. Lo, B. J. Marston, B. A. Dahl, and K. M. De Cock, “Ebola: Anatomy of an epidemic,” Annu. Rev. Med., vol. 68, no. 1, pp. 359-370, 2017. doi: 10.1146/annurev-med-050715-105505
  • T. Garske, A. Cori, A. Ariyarajah, I. M. Blake, I. Dorigatti, T. Eckmanns, et al., “Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013–2016,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 372, no. 1721, p. 20160308, 2017. doi: 10.1098/rstb.2016.0308
  • S. Baize, D. Pannetier, L. Oestereich, T. Rieger, L. Koivogui, N. Magassouba, et al., “Emergence of Zaire Ebola virus disease in Guinea,” N. Engl. J. Med., vol. 371, no. 15, pp. 1418-1425, 2014. doi: 10.1056/NEJMoa1404505
  • H. Feldmann and T. W. Geisbert, “Ebola hemorrhagic fever,” Lancet, vol. 377, no. 9768, pp. 849-862, 2011. doi: 10.1016/S0140-6736(10)60667-8
  • Almeida-Pinto, R. Pinto, and J. Rocha, “Navigating the complex landscape of Ebola infection treatment: A review of emerging pharmacological approaches,” Infect. Dis. Ther., vol. 13, pp. 21-55, 2024. doi: 10.1007/s40121-023-00913-y
  • M. U. Mirza, M. Vanmeert, A. Ali, K. Iman, M. Froeyen, and M. Idrees, “Perspectives towards antiviral drug discovery against Ebola virus,” J. Med. Virol., vol. 91, no. 12, pp. 2029-2048, 2019. doi: 10.1002/jmv.25357
  • U. Saray and U. Çavdar, “Investigating the role of artificial intelligence in the diagnosis and treatment of Alzheimer’s disease,” in VIII International Scientific and Vocational Studies Congress (BILMES 2023), Turkey, Dec. 2023, pp. 132-137.
  • Vecchio, L. Sorrentino, A. Paoletti, R. Marra, and M. Arbitrio, “The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease,” J. Cent. Nerv. Syst. Dis., vol. 13, 11795735211029113, 2021. doi: 10.1177/11795735211029113
  • C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, et al., “Global prevalence of dementia: a Delphi consensus study,” Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005. doi: 10.1016/S0140-6736(05)67889-0
  • E. Bomasang-Layno and R. Bronsther, “Diagnosis and treatment of Alzheimer’s disease: An update,” Delaware J. Public Health, vol. 7, no. 4, pp. 74-85, 2021. doi: 10.32481/djph.2021.09.009
  • Hampel, M. M. Mesulam, A. C. Cuello, A. S. Khachaturian, A. Vergallo, M. R. Farlow, et al., “Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research,” J. Prev. Alzheimers Dis., vol. 6, no. 1, pp. 2-15, 2019. doi: 10.14283/jpad.2018.43
  • B. Ul Islam and S. Tabrez, “Management of Alzheimer’s disease-An insight into enzymatic and other novel potential targets,” Int. J. Biol. Macromol., vol. 97, pp. 700-709, 2017. doi: 10.1016/j.ijbiomac.2016.12.074
  • S. López, J. Bastida, F. Viladomat, and C. Codina, “Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts,” Life Sci., vol. 71, no. 21, pp. 2521-2529, 2002. doi: 10.1016/S0024-3205(02)02034-9
  • V. F. Echenique, G. Alvarez-Rivera, V. M. A. Luna, A. F. V. da Cruz Antonio, M. R. Mazalli, E. Ibañez, et al., “Pressurized liquid extraction with ethanol in an intermittent process for rice bran oil: Evaluation of process variables on the content of β-sitosterol and phenolic compounds, antioxidant capacity, acetylcholinesterase inhibitory activity, and oil quality,” LWT – Food Sci. Technol., vol. 207, p. 116650, 2024. doi: 10.1016/j.lwt.2023.116650
  • C. Kazak, M. Aygün, G. Turgut Cin, M. Odabaşoğlu, S. Özbey, and O. Büyükgüngör, “2-[(4-Hydroxyphenyl)iminomethyl]thiophene,” Acta Crystallogr. Sect. C Struct. Chem., vol. 56, pt. 8, pp. 1044-1045, 2000. doi: 10.1107/S0108270100007770
  • C. A. Lane, J. Hardy, and J. M. Schott, “Alzheimer’s disease,” Eur. J. Neurol., vol. 25, no. 1, pp. 59-70, 2018. doi: 10.1111/ene.13439
  • Ali, A. Haque, K. Saleem, and M.-F. Hsieh, “Schiff bases: An emerging class of therapeutic agents,” Curr. Org. Chem., vol. 20, no. 8, pp. 1-13, 2016. doi: 10.2174/1385272820666151123150433
  • A. Tiwari, V. Gupta, and A. Kushwah, “In silico and in vitro anti-Alzheimer potential of Schiff base derivatives,” Med. Chem. Res., vol. 29, no. 5, pp. 813-822, 2020. doi: 10.1007/s00044-020-02551-y
  • Matsuno, A. Marzi, and H. Feldmann, “Ebola virus entry: From molecular characterization to drug discovery,” Trends Microbiol., vol. 27, no. 7, pp. 593-604, 2019. doi: 10.1016/j.tim.2019.02.005
  • S. M. Gomha, S. M. Riyadh, S. A. Alharbi, and M. M. Elaasser, “Synthesis and antiviral evaluation of new Schiff base derivatives against hepatitis A and Ebola viruses,” Arch. Pharm., vol. 355, no. 8, p. e2100509, 2022. doi: 10.1002/ardp.202100509
  • Gaussian 03, Gaussian, Inc., Wallingford, CT, 2004. [Online]. Available: https://gaussian.com/
  • P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem., vol. 98, no. 45, pp. 11623-11627, 1994. doi: 10.1021/j100096a001
  • A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648-5652, 1993. doi: 10.1063/1.464913
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. doi: 10.1103/PhysRevB.37.785
  • G. A. Petersson and M. A. Al-Laham, “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys., vol. 94, no. 9, pp. 6081-6090, 1991. doi: 10.1063/1.460447
  • J. Frisch, A. B. Nielsen, and A. J. Holder, GaussView user manual. Gaussian Inc., 2001.
  • J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer17 [Computer software],” Univ. Western Australia, 2017.
  • F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, no. 2, pp. 129-138, 1977. doi: 10.1007/BF00549096
  • A. Spackman and D. Jayatilaka, “Hirshfeld surface analysis,” CrystEngComm, vol. 11, no. 1, pp. 19-32, 2009. doi: 10.1039/B818330A
  • J. McKinnon, D. Jayatilaka, and M. A. Spackman, “Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces,” Chem. Commun., no. 37, pp. 3814-3816, 2007. doi: 10.1039/B704980C
  • C. S. Brown, M. S. Lee, D. W. Leung, T. Wang, W. Xu, P. Luthra, et al., “In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity,” J. Mol. Biol., vol. 426, no. 10, pp. 2045-2058, 2014. doi: 10.1016/j.jmb.2014.01.010
  • A. P. Garner, J. M. Gozgit, R. Anjum, S. Vodala, A. Schrock, T. Zhou, et al., “Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients,” Clin. Cancer Res., vol. 20, no. 22, pp. 5745-5755, 2014. doi: 10.1158/1078-0432.CCR-14-1397
  • C. Bartolucci, E. Perola, C. Pilger, G. Fels, and D. Lamba, “Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs,” Proteins Struct. Funct. Bioinform., vol. 42, no. 2, pp. 182-191, 2001. doi: 10.1002/1097-0134(20010201)42:2<182:AID-PROT1012>3.0.CO;2-7
  • Trott and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010. doi: 10.1002/jcc.21334
  • Dassault Systèmes BIOVIA, Discovery Studio Visualizer, Version 2017, San Diego, CA, USA, 2017.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules,” Sci. Rep., vol. 7, p. 42717, 2017. doi: 10.1038/srep42717
  • M. H. Islam and M. A. Hannan, “Schiff bases: Contemporary synthesis, properties, and applications,” IntechOpen, 2024. doi: 10.5772/intechopen.114850
  • Huang, Z. Zeng, and Q. Huang, “The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S,” Zeitschrift für Kristallographie - New Crystal Structures, vol. 239, no. 1, pp. 51-52, 2024. doi: 10.1515/ncrs-2023-0135
  • A. Özek Yıldırım, M. Gülsu, and Ç. Albayrak Kaştaş, “Synthesis, crystal structure, and computational studies of a new Schiff base compound: (E)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol,” Structure Reports, vol. 74, no. 3, pp. 319-322, 2018. doi: 10.1107/S2056989018002062
  • H. H. Tang, L. Zhang, L. L. Zeng, X. M. Fang, L. R. Lin, and H. Zhang, “A pair of Schiff base enantiomers studied by absorption, fluorescence, electronic and vibrational circular dichroism spectroscopies and density functional theory calculation,” RSC Adv., vol. 5, no. 46, pp. 36813-36819, 2015. doi: 10.1039/C5RA04885A
  • Fukui, “Role of frontier orbitals in chemical reactions,” Science, vol. 218, no. 4574, pp. 747-754, 1982. doi: 10.1126/science.218.4574.747
  • G. Parr and W. Yang, Density-functional theory of atoms and molecules. Oxford University Press, 1989.
  • P. K. Chattaraj, U. Sarkar, and D. R. Roy, “Electrophilicity index,” Chem. Rev., vol. 106, no. 6, pp. 2065-2091, 2006. doi: 10.1021/cr040109f
  • Y. Zhang, G. Lu, J. Li, Y. Wang, and G. Yang, “Study on the electronic and optical properties of organic dye sensitizers using DFT and TD-DFT,” J. Mol. Struct., vol. 1015, pp. 77-84, 2012. doi: 10.1016/j.molstruc.2011.12.048
  • A. P. de Silva, H. Q. N. Gunaratne, and C. P. McCoy, “A molecular photoionic AND gate based on fluorescent signaling,” Nature, vol. 364, no. 6434, pp. 42-44, 1993. doi: 10.1038/364042a0
  • P. Politzer and J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, pp. 134-142, 2002. doi: 10.1007/s00214-002-0363-9
  • C. H. Suresh, V. Krishnakumar, G. Sudhakar, and R. Aravind, “Molecular electrostatic potential analysis: A powerful tool to predict chemical reactivity and non-covalent interactions in molecules,” J. Mol. Struct., vol. 1250, p. 131705, 2022. doi: 10.1016/j.molstruc.2021.131705
  • A. D. MacKerell, “Empirical force fields for biological macromolecules: Overview and issues,” J. Comput. Chem., vol. 25, no. 13, pp. 1584-1604, 2004. doi: 10.1002/jcc.20082
  • P. Bouanich and A. Predoi-Cross, “Theoretical calculations for line-broadening and pressure-shifting in the fundamental and first two overtone bands of CO-H2,” J. Mol. Struct., vol. 742, no. 1-3, pp. 183-190, 2005. doi: 10.1016/j.molstruc.2005.01.004
  • A. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: Recent developments,” in Nonlinear Optical Effects and Materials, Springer, 2000, pp. 163-299.
  • P. P. Kuzhir et al., “Onion-like carbon based polymer composite films in microwaves,” Solid State Sci., vol. 11, no. 10, pp. 1762-1767, 2009. doi: 10.1016/j.solidstatesciences.2008.12.003
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chem. Rev., vol. 88, no. 6, pp. 899-926, 1988. doi: 10.1021/cr00088a005
  • F. Jensen, Introduction to Computational Chemistry, 3rd ed. John Wiley & Sons, 2017.
  • C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach,” Chem. Phys. Lett., vol. 460, no. 4-6, pp. 552-558, 2008. doi: 10.1016/j.cplett.2008.06.042
  • F. Weinhold, Discovering Chemistry with Natural Bond Orbitals. John Wiley & Sons, 2012.
  • S. Mulliken, “Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis,” J. Chem. Phys., vol. 36, no. 12, pp. 3428-3439, 1962. doi: 10.1063/1.1732745
  • Ş. Çakmak, B. Koşar Kırca, A. Veyisoğlu, H. Yakan, C. C. Ersanlı, ve H. Kütük, “Experimental and theoretical investigations on a furan-2-carboxamide-bearing thiazole: Synthesis, molecular characterization by IR/NMR/XRD, electronic characterization by DFT, Hirshfeld surface analysis and biological activity,” Crystal Structure Communications, vol. 78, no. 3, pp. 201–211, 2022. doi: 10.1107/S2053229622001776
  • Shyamapada, M. Christoph, ve S. Mitra, “Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials,” Acta Crystallogr. Sect. B, vol. 63, pp. 129-137, 2016. doi: 10.1107/S0108768109008780
  • Başak, Antitumor and anticarcinogenic activity of some Schiff base molecules studied by molecular docking, Master’s Thesis, Sinop University, Graduate Education Institute, 2023.
  • Anwar, P. Kumar, ve A. U. Khan, “Modern tools and techniques in computer-aided drug design,” M. S. Koumar, Ed., Molecular docking for computer-aided drug design, Academic Press, pp. 1-22, 2021. doi: 10.1016/B978-0-12-823549-6.00001-2
  • X.-Y. Meng, H.-X. Zhang, M. Mezei, ve M. Cui, “Molecular docking: A powerful approach for structure-based drug discovery,” Curr. Comput.-Aided Drug Des., 2012. doi: 10.2174/157340911795677602
  • G. Ferreira, R. N. dos Santos, G. Oliva, ve A. D. Andricopulo, “Molecular docking and structure-based drug design strategies,” Molecules, vol. 20, no. 7, pp. 13384-13421, 2015. doi: 10.3390/molecules200713384
  • Pinzi ve G. Rastelli, “Molecular docking: Shifting paradigms in drug discovery,” Int. J. Mol. Sci., vol. 20, no. 18, p. 4331, 2019. doi: 10.3390/ijms20184331
  • B. Banaganapalli, F. A. Morad, M. Khan, C. S. Kumar, R. Elango, Z. Awan, ve N. A. Shaik, “Molecular docking,” in Essentials of Bioinformatics, Volume I: Understanding Bioinformatics: Genes to Proteins, pp. 335-353, 2019.
  • A. J. Owoloye, F. C. Ligali, O. A. Enejoh, A. Z. Musa, O. Aina, E. T. Idowu, ve K. M. Oyebola, “Molecular docking, simulation, and binding free energy analysis of small molecules as Pf HT1 inhibitors,” PloS One, vol. 17, no. 8, p. e0268269, 2022. doi: 10.1371/journal.pone.0268269
  • D. F. McGinnity, J. Collington, R. P. Austin, ve R. J. Riley, “Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs,” Curr. Drug Metab., vol. 8, no. 5, pp. 463-479, 2007. doi: 10.2174/138920007782151895
  • P. M. Gleeson, A. Hersey, ve S. Hannongbua, “In silico ADME models: A general assessment of their utility in drug discovery applications,” Curr. Top. Med. Chem., vol. 11, no. 4, pp. 358–381, 2011. doi: 10.2174/156802611794863691
  • S. G. Summerfield, A. J. Stevens, L. Cutler, M. del Carmen Osuna, B. Hammond, S. P. Tang, A. Hersey, D. J. Spalding, ve P. Jeffrey, “Improving the in vitro prediction of in vivo central nervous system penetration: Integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain,” J. Pharmacol. Exp. Ther., vol. 316, no. 3, pp. 1282-1290, 2006. doi: 10.1124/jpet.105.092916
  • P. F. Hollenberg, U. M. Kent, ve N. N. Bumpus, “Mechanism-based inactivation of human cytochromes P450s: Experimental characterization, reactive intermediates, and clinical implications,” Chem. Res. Toxicol., vol. 21, no. 1, pp. 189-205, 2008. doi: 10.1021/tx700282x
  • P. Gleeson, “Generation of a set of simple, interpretable ADMET rules of thumb,” J. Med. Chem., vol. 51, no. 4, pp. 817-834, 2008. doi: 10.1021/jm701198b
  • J. D. Hughes et al., “Physiochemical drug properties associated with in vivo toxicological outcomes,” Bioorg. Med. Chem. Lett., vol. 18, pp. 4872-4875, 2008. doi: 10.1016/j.bmcl.2008.07.071
  • J. A. Arnott ve S. L. Planey, “The influence of lipophilicity in drug discovery and design,” Expert Opin. Drug Discov., vol. 7, no. 10, pp. 863-875, 2012. doi: 10.1517/17460441.2012.714363
  • H. van De Waterbeemd, D. A. Smith, K. Beaumont, ve D. K. Walker, “Property-based design: optimization of drug absorption and pharmacokinetics,” J. Med. Chem., vol. 44, no. 9, pp. 1313-1333, 2001. doi: 10.1021/jm000407e
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, ve P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Adv. Drug Deliv. Rev., vol. 46, no. 1-3, pp. 3-26, 2001. doi: 10.1016/S0169-409X(00)00129-0
  • L. Di, E. H. Kerns, ve G. T. Carter, “Drug-like property concepts in pharmaceutical design,” Curr. Pharm. Des., vol. 15, no. 19, pp. 2184-2194, 2009. doi: 10.2174/138161209788682479

A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses

Yıl 2025, Cilt: 9 Sayı: 1, 145 - 160, 30.06.2025
https://doi.org/10.47897/bilmes.1704235

Öz

Ever since they were first discovered, Schiff bases have been the subject of much attention due to their functional chemical character and intensive interdisciplinary applications, particularly in medicinal chemistry. The compounds are gaining interest due to their ability to provide stable coordination complexes and exhibit a vast array of biological activities, such as antimicrobial, anticancer, and antiviral activities. In this contribution, the structure of 2-[(4-hydroxyphenyl)iminomethyl]thiophene, (I), a compound previously described in the literature, was ascertained with great accuracy employing up-to-date quantum chemical calculations to better understand its electronic behavior and reactivity. In addition, the antiviral, anticancer, and anti-Alzheimer activity of the compound was thoroughly investigated employing a battery of in vitro and computational assays. The results proved the active character of the compound against various biological targets, and that it was a multiradial drug candidate. Furthermore, ADME-Tox properties were examined to evaluate the pharmacokinetic profile and toxicity of the compound. Favorable ADME properties and a low likelihood of toxicity highlight the molecule’s suitability for continued development. The research showed the chemical stability of the molecule, its high hyperconjugation and strong intramolecular stability as factors contributing to its overall strength. These structural features also hold out promise for drug development since they can lead to increased efficacy and long-lasting activity in biological systems. Furthermore, molecular docking simulations corroborated the efficacy of the compound as a potential ligand that could interact with key biological macromolecules, rendering it a highly effective ligand with high binding affinity. This also contributes to its potential as a lead compound for new therapeutic drugs. Lastly, this research not only describes the structure and properties of (I), but also provides a pragmatic window through its pharmacological potential, worthy of experimental and clinical studies to explore fully its promise in drug discovery.

Kaynakça

  • H. Schiff, “Investigations on salicyl derivatives,” Justus Liebigs Annalen der Chemie, vol. 150, no. 2, pp. 193-200, 1869.
  • R. Meena, P. Meena, A. Kumari, N. Sharma, and N. Fahmi, “Schiff Base in Organic, Inorganic and Physical Chemistry,” in Schiff Bases and Their Metal Complexes: Synthesis, Structural Characteristics and Applications, T. Akitsu, Ed. IntechOpen, 2023. doi: 10.5772/intechopen.108396.
  • Z. Hussain, E. Yousif, A. Ahmed, and A. Altaie, “Synthesis and characterization of Schiff’s bases of sulfamethoxazole,” Organic and Medicinal Chemistry Letters, vol. 4, no. 1, pp. 1-4, 2014. doi: 10.1186/2191-2858-4-1.
  • S. L. Sangle, “Introduction to Schiff base,” in Schiff Base in Organic, Inorganic and Physical Chemistry, T. Akitsu, Ed. IntechOpen, 2022. doi: 10.5772/intechopen.104134.
  • S. K. Raju, A. Settu, A. Thiyagarajan, D. Rama, P. Sekar, and S. Kumar, “Biological applications of Schiff bases: An overview,” GSC Biological and Pharmaceutical Sciences, vol. 21, no. 3, pp. 203-215, 2022. doi: 10.30574/gscbps.2022.21.3.0484.
  • A. M. Abu-Dief, M. Ibrahim, and A. Mohamed, “A review on versatile applications of transition metal complexes incorporating Schiff bases,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 4, no. 2, pp. 119-133, 2015. doi: 10.1016/j.bjbas.2015.05.004
  • F. Tisato, F. Refosco, and G. Bandoli, “Structural survey of technetium complexes,” Coordination Chemistry Reviews, vol. 135–136, pp. 325-397, 1994. doi: 10.1016/0010-8545(94)80072-3
  • A. L. Berhanu, M. Gaurav, I. Mohiuddin, A. K. Malik, J. S. Aulakh, V. Kumar, and K. H. Kim, “A review of the applications of Schiff bases as optical chemical sensors,” Trends in Analytical Chemistry, vol. 116, pp. 74-91, 2019. doi: 10.1016/j.trac.2019.04.025
  • S. A. Dalia, F. Afsan, M. S. Hossain, M. N. Khan, C. Zakaria, M. E. Zahan, and M. Ali, “A short review on chemistry of Schiff base metal complexes and their catalytic application,” International Journal of Chemical Studies, vol. 6, no. 3, pp. 2859-2866, 2018.
  • C. C. Ersanlı and S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound,” International Scientific and Vocational Studies Journal, vol. 8, no. 2, pp. 162-177, 2024. doi: 10.47897/bilmes.1573560
  • H. M. Alkahtani, A. A. Almehizia, M. A. Al-Omar, A. J. Obaidullah, A. A. Zen, A. S. Hassan, and W. M. Aboulthana, “In vitro evaluation and bioinformatics analysis of Schiff bases bearing pyrazole scaffold as bioactive agents: Antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities,” Molecules, vol. 28, no. 20, p. 7125, 2023. doi: 10.3390/molecules28207125
  • T. Alorini, I. Daoud, A. N. Al-Hakimi, F. Alminderej, and A. E. Albadri, “An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes,” Research on Chemical Intermediates, vol. 49, no. 4, pp. 1701-1730, 2023. doi: 10.1007/s11164-022-04946-1
  • Y. Gou, J. Li, B. Fan, B. Xu, M. Zhou, and F. Yang, “Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents,” European Journal of Medicinal Chemistry, vol. 134, pp. 207-217, 2017. doi: 10.1016/j.ejmech.2017.03.022
  • M. Köse, G. Ceyhan, M. Tümer, İ. Demirtaş, İ. Gönül, and V. McKee, “Monodentate Schiff base ligands: Structural characterization, photoluminescence, anticancer, electrochemical, and sensor properties,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 137, pp. 477-485, 2015. doi: 10.1016/j.saa.2014.08.124
  • A. Garg, D. Dureja, A. Vijeata, G. R. Chaudhary, S. Berry, S. Chaudhary, and A. Bhalla, “Synthesis of novel α-carboxylate-β-bismethylsulfanyl pyrazolyl Schiff base derivatives: Targeting DNA gyrase for antibacterial activity,” Journal of Molecular Structure, vol. 1337, p. 141954, 2025. doi: 10.1016/j.molstruc.2025.141954
  • N. Isalm et al., “Exploration of the synthesis, crystal structure, Hirshfeld surface analysis, binding properties, antibacterial activities, and molecular docking of a Schiff base nickel(II) complex,” Journal of Molecular Structure, vol. 140294, 2024. doi: 10.1016/j.molstruc.2024.140294
  • H. A. Hasan, S. M. Mahdi, and H. A. Ali, “Tetradentate azo Schiff base Ni(II), Pd(II), and Pt(II) complexes: Synthesis, spectral properties, antibacterial activity, cytotoxicity, and docking studies,” Bulletin of the Chemical Society of Ethiopia, vol. 38, no. 1, pp. 99-111, 2024. doi: 10.4314/bcse.v38i1.7
  • D. Pardaeva et al., “Spectral characterization and antibacterial, antifungal, antiviral activities of salicyl-based new Schiff bases and their Co(II), Ni(II), Cu(II), Zn(II), and Pd(II) complexes,” Revue Roumaine de Chimie, vol. 69, no. 1-2, pp. 83-96, 2024. doi: 10.33224/rrch.2024.69.1-2.10
  • M. Azzouzi et al., “Synthesis, crystal structure, and antiviral evaluation of new imidazopyridine-Schiff base derivatives: In vitro and in silico anti-HIV studies,” RSC Advances, vol. 14, no. 50, pp. 36902–36918, 2024. doi: 10.1039/d4ra07561g
  • R. H. Taha et al., “Impact of Fe(III) and Ce(III) ions on pharmacological properties of novel Schiff base ligand: Anticancer, antiviral, antioxidant, antifungal investigations and computational insights,” Journal of Molecular Liquids, vol. 427, p. 127382, 2025. doi: 10.1016/j.molliq.2024.127382
  • M. Sarfraz et al., “New pyrimidinone-bearing aminomethylenes and Schiff bases as potent antioxidant, antibacterial, SARS-CoV-2, and COVID-19 main protease (MPro) inhibitors: Design, synthesis, bioactivities, and computational studies,” ACS Omega, vol. 9, no. 24, pp. 25730-25747, 2024. doi: 10.1021/acsomega.3c09393
  • M. Yılmaz, “Cancer epidemiology,” in Cancer Genetics and Molecular Biology, İ. Değirmenci, Ed. Istanbul: Nobel, 2022, pp. 3-25.
  • Özbayer, “Carcinogenesis,” in Cancer Genetics and Molecular Biology, İ. Değirmenci, Ed. Istanbul: Nobel, 2022, pp. 29-47.
  • R. Robinson, Y. M. Wu, and S. F. Lin, “The protein tyrosine kinase family of the human genome,” Oncogene, vol. 19, no. 49, pp. 5548-5557, 2000. doi: 10.1038/sj.onc.1204082
  • F. Inizan, M. Hanna, M. Stolyarchuk, I. Chauvot de Beauchêne, and L. Tchertanov, “The first 3D model of the full-length KIT cytoplasmic domain reveals a new look for an old receptor,” Scientific Reports, vol. 10, no. 1, p. 5401, 2020. doi: 10.1038/s41598-020-62352-2
  • P. Besmer, J. Murphy, P. George, et al., “A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family,” Nature, vol. 320, pp. 415-421, 1986. doi: 10.1038/320415a0
  • D. Mol, D. R. Dougan, T. R. Schneider, R. J. Skene, M. L. Kraus, D. N. Scheibe, et al., “Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase,” J. Biol. Chem., vol. 279, no. 30, pp. 31655-31663, 2004. doi: 10.2210/pdb1t46/pdb
  • Sheikh, T. Tran, S. Vranic, A. Levy, and R. D. Bonfil, “Role and significance of c-KIT receptor tyrosine kinase in cancer: A review,” Bosn. J. Basic Med. Sci., vol. 22, no. 5, p. 683, 2022. doi: 10.17305/bjbms.2022.7185
  • J. Lennartsson and L. Rönnstrand, “Stem cell factor receptor/c-Kit: From basic science to clinical implications,” Physiol. Rev., vol. 92, no. 4, pp. 1619-1649, 2012. doi: 10.1152/physrev.00046.2011
  • M. Abbaspour Babaei, B. Kamalidehghan, M. Saleem, H. Z. Huri, and F. Ahmadipour, “Receptor tyrosine kinase (c-Kit) inhibitors: A potential therapeutic target in cancer cells,” Drug Des. Devel. Ther., vol. 10, pp. 2443-2459, 2016. doi: 10.2147/DDDT.S106527
  • J. A. Curtin, K. Busam, D. Pinkel, and B. C. Bastian, “Somatic activation of KIT in distinct subtypes of melanoma,” J. Clin. Oncol., vol. 24, no. 26, pp. 4340-4346, 2006. doi: 10.1200/JCO.2005.03.9199
  • A. Beghini, C. B. Ripamonti, R. Cairoli, G. Cazzaniga, P. Colapietro, F. Elice, et al., “KIT activating mutations: Incidence in adult and pediatric acute myeloid leukemia, and identification of an internal tandem duplication,” Haematologica, vol. 89, no. 8, pp. 920-925, 2004. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/15339674
  • D. Malvy, A. K. McElroy, H. de Clerck, S. Günther, and J. van Griensven, “Ebola virus disease,” Lancet, vol. 393, no. 10174, pp. 936-948, 2019. doi: 10.1016/S0140-6736(18)33132-5
  • T. Q. Lo, B. J. Marston, B. A. Dahl, and K. M. De Cock, “Ebola: Anatomy of an epidemic,” Annu. Rev. Med., vol. 68, no. 1, pp. 359-370, 2017. doi: 10.1146/annurev-med-050715-105505
  • T. Garske, A. Cori, A. Ariyarajah, I. M. Blake, I. Dorigatti, T. Eckmanns, et al., “Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013–2016,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 372, no. 1721, p. 20160308, 2017. doi: 10.1098/rstb.2016.0308
  • S. Baize, D. Pannetier, L. Oestereich, T. Rieger, L. Koivogui, N. Magassouba, et al., “Emergence of Zaire Ebola virus disease in Guinea,” N. Engl. J. Med., vol. 371, no. 15, pp. 1418-1425, 2014. doi: 10.1056/NEJMoa1404505
  • H. Feldmann and T. W. Geisbert, “Ebola hemorrhagic fever,” Lancet, vol. 377, no. 9768, pp. 849-862, 2011. doi: 10.1016/S0140-6736(10)60667-8
  • Almeida-Pinto, R. Pinto, and J. Rocha, “Navigating the complex landscape of Ebola infection treatment: A review of emerging pharmacological approaches,” Infect. Dis. Ther., vol. 13, pp. 21-55, 2024. doi: 10.1007/s40121-023-00913-y
  • M. U. Mirza, M. Vanmeert, A. Ali, K. Iman, M. Froeyen, and M. Idrees, “Perspectives towards antiviral drug discovery against Ebola virus,” J. Med. Virol., vol. 91, no. 12, pp. 2029-2048, 2019. doi: 10.1002/jmv.25357
  • U. Saray and U. Çavdar, “Investigating the role of artificial intelligence in the diagnosis and treatment of Alzheimer’s disease,” in VIII International Scientific and Vocational Studies Congress (BILMES 2023), Turkey, Dec. 2023, pp. 132-137.
  • Vecchio, L. Sorrentino, A. Paoletti, R. Marra, and M. Arbitrio, “The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease,” J. Cent. Nerv. Syst. Dis., vol. 13, 11795735211029113, 2021. doi: 10.1177/11795735211029113
  • C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, et al., “Global prevalence of dementia: a Delphi consensus study,” Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005. doi: 10.1016/S0140-6736(05)67889-0
  • E. Bomasang-Layno and R. Bronsther, “Diagnosis and treatment of Alzheimer’s disease: An update,” Delaware J. Public Health, vol. 7, no. 4, pp. 74-85, 2021. doi: 10.32481/djph.2021.09.009
  • Hampel, M. M. Mesulam, A. C. Cuello, A. S. Khachaturian, A. Vergallo, M. R. Farlow, et al., “Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research,” J. Prev. Alzheimers Dis., vol. 6, no. 1, pp. 2-15, 2019. doi: 10.14283/jpad.2018.43
  • B. Ul Islam and S. Tabrez, “Management of Alzheimer’s disease-An insight into enzymatic and other novel potential targets,” Int. J. Biol. Macromol., vol. 97, pp. 700-709, 2017. doi: 10.1016/j.ijbiomac.2016.12.074
  • S. López, J. Bastida, F. Viladomat, and C. Codina, “Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts,” Life Sci., vol. 71, no. 21, pp. 2521-2529, 2002. doi: 10.1016/S0024-3205(02)02034-9
  • V. F. Echenique, G. Alvarez-Rivera, V. M. A. Luna, A. F. V. da Cruz Antonio, M. R. Mazalli, E. Ibañez, et al., “Pressurized liquid extraction with ethanol in an intermittent process for rice bran oil: Evaluation of process variables on the content of β-sitosterol and phenolic compounds, antioxidant capacity, acetylcholinesterase inhibitory activity, and oil quality,” LWT – Food Sci. Technol., vol. 207, p. 116650, 2024. doi: 10.1016/j.lwt.2023.116650
  • C. Kazak, M. Aygün, G. Turgut Cin, M. Odabaşoğlu, S. Özbey, and O. Büyükgüngör, “2-[(4-Hydroxyphenyl)iminomethyl]thiophene,” Acta Crystallogr. Sect. C Struct. Chem., vol. 56, pt. 8, pp. 1044-1045, 2000. doi: 10.1107/S0108270100007770
  • C. A. Lane, J. Hardy, and J. M. Schott, “Alzheimer’s disease,” Eur. J. Neurol., vol. 25, no. 1, pp. 59-70, 2018. doi: 10.1111/ene.13439
  • Ali, A. Haque, K. Saleem, and M.-F. Hsieh, “Schiff bases: An emerging class of therapeutic agents,” Curr. Org. Chem., vol. 20, no. 8, pp. 1-13, 2016. doi: 10.2174/1385272820666151123150433
  • A. Tiwari, V. Gupta, and A. Kushwah, “In silico and in vitro anti-Alzheimer potential of Schiff base derivatives,” Med. Chem. Res., vol. 29, no. 5, pp. 813-822, 2020. doi: 10.1007/s00044-020-02551-y
  • Matsuno, A. Marzi, and H. Feldmann, “Ebola virus entry: From molecular characterization to drug discovery,” Trends Microbiol., vol. 27, no. 7, pp. 593-604, 2019. doi: 10.1016/j.tim.2019.02.005
  • S. M. Gomha, S. M. Riyadh, S. A. Alharbi, and M. M. Elaasser, “Synthesis and antiviral evaluation of new Schiff base derivatives against hepatitis A and Ebola viruses,” Arch. Pharm., vol. 355, no. 8, p. e2100509, 2022. doi: 10.1002/ardp.202100509
  • Gaussian 03, Gaussian, Inc., Wallingford, CT, 2004. [Online]. Available: https://gaussian.com/
  • P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem., vol. 98, no. 45, pp. 11623-11627, 1994. doi: 10.1021/j100096a001
  • A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648-5652, 1993. doi: 10.1063/1.464913
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. doi: 10.1103/PhysRevB.37.785
  • G. A. Petersson and M. A. Al-Laham, “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys., vol. 94, no. 9, pp. 6081-6090, 1991. doi: 10.1063/1.460447
  • J. Frisch, A. B. Nielsen, and A. J. Holder, GaussView user manual. Gaussian Inc., 2001.
  • J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer17 [Computer software],” Univ. Western Australia, 2017.
  • F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, no. 2, pp. 129-138, 1977. doi: 10.1007/BF00549096
  • A. Spackman and D. Jayatilaka, “Hirshfeld surface analysis,” CrystEngComm, vol. 11, no. 1, pp. 19-32, 2009. doi: 10.1039/B818330A
  • J. McKinnon, D. Jayatilaka, and M. A. Spackman, “Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces,” Chem. Commun., no. 37, pp. 3814-3816, 2007. doi: 10.1039/B704980C
  • C. S. Brown, M. S. Lee, D. W. Leung, T. Wang, W. Xu, P. Luthra, et al., “In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity,” J. Mol. Biol., vol. 426, no. 10, pp. 2045-2058, 2014. doi: 10.1016/j.jmb.2014.01.010
  • A. P. Garner, J. M. Gozgit, R. Anjum, S. Vodala, A. Schrock, T. Zhou, et al., “Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients,” Clin. Cancer Res., vol. 20, no. 22, pp. 5745-5755, 2014. doi: 10.1158/1078-0432.CCR-14-1397
  • C. Bartolucci, E. Perola, C. Pilger, G. Fels, and D. Lamba, “Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs,” Proteins Struct. Funct. Bioinform., vol. 42, no. 2, pp. 182-191, 2001. doi: 10.1002/1097-0134(20010201)42:2<182:AID-PROT1012>3.0.CO;2-7
  • Trott and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,” J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010. doi: 10.1002/jcc.21334
  • Dassault Systèmes BIOVIA, Discovery Studio Visualizer, Version 2017, San Diego, CA, USA, 2017.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules,” Sci. Rep., vol. 7, p. 42717, 2017. doi: 10.1038/srep42717
  • M. H. Islam and M. A. Hannan, “Schiff bases: Contemporary synthesis, properties, and applications,” IntechOpen, 2024. doi: 10.5772/intechopen.114850
  • Huang, Z. Zeng, and Q. Huang, “The crystal structure of (E)-2-methoxy-6-(((5-methyl-1,3,4-thiadiazol-2-yl)imino)methyl)phenol, C11H11N3O2S,” Zeitschrift für Kristallographie - New Crystal Structures, vol. 239, no. 1, pp. 51-52, 2024. doi: 10.1515/ncrs-2023-0135
  • A. Özek Yıldırım, M. Gülsu, and Ç. Albayrak Kaştaş, “Synthesis, crystal structure, and computational studies of a new Schiff base compound: (E)-4-bromo-2-ethoxy-6-{[(2-methoxyphenyl)imino]methyl}phenol,” Structure Reports, vol. 74, no. 3, pp. 319-322, 2018. doi: 10.1107/S2056989018002062
  • H. H. Tang, L. Zhang, L. L. Zeng, X. M. Fang, L. R. Lin, and H. Zhang, “A pair of Schiff base enantiomers studied by absorption, fluorescence, electronic and vibrational circular dichroism spectroscopies and density functional theory calculation,” RSC Adv., vol. 5, no. 46, pp. 36813-36819, 2015. doi: 10.1039/C5RA04885A
  • Fukui, “Role of frontier orbitals in chemical reactions,” Science, vol. 218, no. 4574, pp. 747-754, 1982. doi: 10.1126/science.218.4574.747
  • G. Parr and W. Yang, Density-functional theory of atoms and molecules. Oxford University Press, 1989.
  • P. K. Chattaraj, U. Sarkar, and D. R. Roy, “Electrophilicity index,” Chem. Rev., vol. 106, no. 6, pp. 2065-2091, 2006. doi: 10.1021/cr040109f
  • Y. Zhang, G. Lu, J. Li, Y. Wang, and G. Yang, “Study on the electronic and optical properties of organic dye sensitizers using DFT and TD-DFT,” J. Mol. Struct., vol. 1015, pp. 77-84, 2012. doi: 10.1016/j.molstruc.2011.12.048
  • A. P. de Silva, H. Q. N. Gunaratne, and C. P. McCoy, “A molecular photoionic AND gate based on fluorescent signaling,” Nature, vol. 364, no. 6434, pp. 42-44, 1993. doi: 10.1038/364042a0
  • P. Politzer and J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, pp. 134-142, 2002. doi: 10.1007/s00214-002-0363-9
  • C. H. Suresh, V. Krishnakumar, G. Sudhakar, and R. Aravind, “Molecular electrostatic potential analysis: A powerful tool to predict chemical reactivity and non-covalent interactions in molecules,” J. Mol. Struct., vol. 1250, p. 131705, 2022. doi: 10.1016/j.molstruc.2021.131705
  • A. D. MacKerell, “Empirical force fields for biological macromolecules: Overview and issues,” J. Comput. Chem., vol. 25, no. 13, pp. 1584-1604, 2004. doi: 10.1002/jcc.20082
  • P. Bouanich and A. Predoi-Cross, “Theoretical calculations for line-broadening and pressure-shifting in the fundamental and first two overtone bands of CO-H2,” J. Mol. Struct., vol. 742, no. 1-3, pp. 183-190, 2005. doi: 10.1016/j.molstruc.2005.01.004
  • A. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: Recent developments,” in Nonlinear Optical Effects and Materials, Springer, 2000, pp. 163-299.
  • P. P. Kuzhir et al., “Onion-like carbon based polymer composite films in microwaves,” Solid State Sci., vol. 11, no. 10, pp. 1762-1767, 2009. doi: 10.1016/j.solidstatesciences.2008.12.003
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chem. Rev., vol. 88, no. 6, pp. 899-926, 1988. doi: 10.1021/cr00088a005
  • F. Jensen, Introduction to Computational Chemistry, 3rd ed. John Wiley & Sons, 2017.
  • C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach,” Chem. Phys. Lett., vol. 460, no. 4-6, pp. 552-558, 2008. doi: 10.1016/j.cplett.2008.06.042
  • F. Weinhold, Discovering Chemistry with Natural Bond Orbitals. John Wiley & Sons, 2012.
  • S. Mulliken, “Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis,” J. Chem. Phys., vol. 36, no. 12, pp. 3428-3439, 1962. doi: 10.1063/1.1732745
  • Ş. Çakmak, B. Koşar Kırca, A. Veyisoğlu, H. Yakan, C. C. Ersanlı, ve H. Kütük, “Experimental and theoretical investigations on a furan-2-carboxamide-bearing thiazole: Synthesis, molecular characterization by IR/NMR/XRD, electronic characterization by DFT, Hirshfeld surface analysis and biological activity,” Crystal Structure Communications, vol. 78, no. 3, pp. 201–211, 2022. doi: 10.1107/S2053229622001776
  • Shyamapada, M. Christoph, ve S. Mitra, “Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials,” Acta Crystallogr. Sect. B, vol. 63, pp. 129-137, 2016. doi: 10.1107/S0108768109008780
  • Başak, Antitumor and anticarcinogenic activity of some Schiff base molecules studied by molecular docking, Master’s Thesis, Sinop University, Graduate Education Institute, 2023.
  • Anwar, P. Kumar, ve A. U. Khan, “Modern tools and techniques in computer-aided drug design,” M. S. Koumar, Ed., Molecular docking for computer-aided drug design, Academic Press, pp. 1-22, 2021. doi: 10.1016/B978-0-12-823549-6.00001-2
  • X.-Y. Meng, H.-X. Zhang, M. Mezei, ve M. Cui, “Molecular docking: A powerful approach for structure-based drug discovery,” Curr. Comput.-Aided Drug Des., 2012. doi: 10.2174/157340911795677602
  • G. Ferreira, R. N. dos Santos, G. Oliva, ve A. D. Andricopulo, “Molecular docking and structure-based drug design strategies,” Molecules, vol. 20, no. 7, pp. 13384-13421, 2015. doi: 10.3390/molecules200713384
  • Pinzi ve G. Rastelli, “Molecular docking: Shifting paradigms in drug discovery,” Int. J. Mol. Sci., vol. 20, no. 18, p. 4331, 2019. doi: 10.3390/ijms20184331
  • B. Banaganapalli, F. A. Morad, M. Khan, C. S. Kumar, R. Elango, Z. Awan, ve N. A. Shaik, “Molecular docking,” in Essentials of Bioinformatics, Volume I: Understanding Bioinformatics: Genes to Proteins, pp. 335-353, 2019.
  • A. J. Owoloye, F. C. Ligali, O. A. Enejoh, A. Z. Musa, O. Aina, E. T. Idowu, ve K. M. Oyebola, “Molecular docking, simulation, and binding free energy analysis of small molecules as Pf HT1 inhibitors,” PloS One, vol. 17, no. 8, p. e0268269, 2022. doi: 10.1371/journal.pone.0268269
  • D. F. McGinnity, J. Collington, R. P. Austin, ve R. J. Riley, “Evaluation of human pharmacokinetics, therapeutic dose and exposure predictions using marketed oral drugs,” Curr. Drug Metab., vol. 8, no. 5, pp. 463-479, 2007. doi: 10.2174/138920007782151895
  • P. M. Gleeson, A. Hersey, ve S. Hannongbua, “In silico ADME models: A general assessment of their utility in drug discovery applications,” Curr. Top. Med. Chem., vol. 11, no. 4, pp. 358–381, 2011. doi: 10.2174/156802611794863691
  • S. G. Summerfield, A. J. Stevens, L. Cutler, M. del Carmen Osuna, B. Hammond, S. P. Tang, A. Hersey, D. J. Spalding, ve P. Jeffrey, “Improving the in vitro prediction of in vivo central nervous system penetration: Integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain,” J. Pharmacol. Exp. Ther., vol. 316, no. 3, pp. 1282-1290, 2006. doi: 10.1124/jpet.105.092916
  • P. F. Hollenberg, U. M. Kent, ve N. N. Bumpus, “Mechanism-based inactivation of human cytochromes P450s: Experimental characterization, reactive intermediates, and clinical implications,” Chem. Res. Toxicol., vol. 21, no. 1, pp. 189-205, 2008. doi: 10.1021/tx700282x
  • P. Gleeson, “Generation of a set of simple, interpretable ADMET rules of thumb,” J. Med. Chem., vol. 51, no. 4, pp. 817-834, 2008. doi: 10.1021/jm701198b
  • J. D. Hughes et al., “Physiochemical drug properties associated with in vivo toxicological outcomes,” Bioorg. Med. Chem. Lett., vol. 18, pp. 4872-4875, 2008. doi: 10.1016/j.bmcl.2008.07.071
  • J. A. Arnott ve S. L. Planey, “The influence of lipophilicity in drug discovery and design,” Expert Opin. Drug Discov., vol. 7, no. 10, pp. 863-875, 2012. doi: 10.1517/17460441.2012.714363
  • H. van De Waterbeemd, D. A. Smith, K. Beaumont, ve D. K. Walker, “Property-based design: optimization of drug absorption and pharmacokinetics,” J. Med. Chem., vol. 44, no. 9, pp. 1313-1333, 2001. doi: 10.1021/jm000407e
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, ve P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Adv. Drug Deliv. Rev., vol. 46, no. 1-3, pp. 3-26, 2001. doi: 10.1016/S0169-409X(00)00129-0
  • L. Di, E. H. Kerns, ve G. T. Carter, “Drug-like property concepts in pharmaceutical design,” Curr. Pharm. Des., vol. 15, no. 19, pp. 2184-2194, 2009. doi: 10.2174/138161209788682479
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Cem Cüneyt Ersanlı 0000-0002-8113-5091

Sultan Başak 0000-0003-0541-3667

Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 13 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Ersanlı, C. C., & Başak, S. (2025). A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses. International Scientific and Vocational Studies Journal, 9(1), 145-160. https://doi.org/10.47897/bilmes.1704235
AMA Ersanlı CC, Başak S. A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses. ISVOS. Haziran 2025;9(1):145-160. doi:10.47897/bilmes.1704235
Chicago Ersanlı, Cem Cüneyt, ve Sultan Başak. “A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses”. International Scientific and Vocational Studies Journal 9, sy. 1 (Haziran 2025): 145-60. https://doi.org/10.47897/bilmes.1704235.
EndNote Ersanlı CC, Başak S (01 Haziran 2025) A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses. International Scientific and Vocational Studies Journal 9 1 145–160.
IEEE C. C. Ersanlı ve S. Başak, “A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses”, ISVOS, c. 9, sy. 1, ss. 145–160, 2025, doi: 10.47897/bilmes.1704235.
ISNAD Ersanlı, Cem Cüneyt - Başak, Sultan. “A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses”. International Scientific and Vocational Studies Journal 9/1 (Haziran2025), 145-160. https://doi.org/10.47897/bilmes.1704235.
JAMA Ersanlı CC, Başak S. A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses. ISVOS. 2025;9:145–160.
MLA Ersanlı, Cem Cüneyt ve Sultan Başak. “A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses”. International Scientific and Vocational Studies Journal, c. 9, sy. 1, 2025, ss. 145-60, doi:10.47897/bilmes.1704235.
Vancouver Ersanlı CC, Başak S. A Multidimensional Investigation from Electronic Properties to Biological Activity of 2-[(4-Hydroxyphenyl)iminomethyl]thiophene by DFT, HOMO-LUMO, MEP, NLO, NBO, Mulliken, Hirshfeld and Molecular Docking Analyses. ISVOS. 2025;9(1):145-60.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License