Derleme
BibTex RIS Kaynak Göster

Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments

Yıl 2025, Cilt: 9 Sayı: 2, 194 - 202, 29.12.2025
https://doi.org/10.47897/bilmes.1809705

Öz

This review summarizes current research examining the corrosion resistance, aging behavior, and mechanical properties of basalt fiber-reinforced polymer (BFTP) composites in marine applications. Naturally derived basalt fiber offers a strong alternative to glass and carbon fibers thanks to its high strength, thermal/chemical stability, low cost, and environmentally friendly structure. Findings indicate that BFTP composites exhibit high corrosion resistance, particularly in challenging environments such as acidic and seawater, and offer superior performance to vinylester resin systems. Surface treatments with silane, zircon, nanotubes, and metal additives also significantly enhance mechanical and corrosion resistance. BFTP composites, which have proven successful in marine hulls, propellers, and structural components, stand out for their low water absorption, high tensile/flexural strength, good fatigue resistance, and high-temperature resistance. Life cycle analyses indicate that they offer a lower carbon footprint compared to glass fiber composites. These properties make BFTP composites a sustainable and cost-effective alternative material for the maritime industry.

Kaynakça

  • B. S. Kantraju, B. Suresha and M.S. Saini, “Effect of type and filler loading on the static mechanical properties of glass-basalt hybrid fabric reinforced epoxy composites,” International Journal of Advances in Production and Mechanical Engineering, vol. 1, no. 5, pp. 60-70, 2015.
  • R. Teti, “Machining of composite materials,” CIRP Annals Manufacturing Technology, vol. 51, no. 2, pp. 611-634, 2002. DOI: 10.1016/S0007-8506(07)61703-X
  • C. Colombo, L. Vergani and M. Burman, “Static and fatigue characterization of new basalt fibre reinforced composites,” Composite Structures, vol. 94, no. 3, February, pp. 1165–1174, 2012. DOI: 10.1016/j.compstruct.2011.10.007
  • A. Ross, “Basalt fibers: Alternative to glass?,” Composites Technology, vol. 12, no. 4, pp. 44–48, 2006.
  • D. Pavlovski, B. Mislavsky and A. Antonov, “CNG cylinder manufacturers test basalt fibre,” Reinforced Plastics, vol. 51, no. 4, April, pp. 36–37, 2007. DOI: 10.1016/S0034-3617(07)70152-2
  • H. Jamshaid, J. Militký, R. Mishra and L. Koukolikova, “Basalt fibers and their composites,” Novelties in Materials Science, vol. 4, pp. 2-61, 2017.
  • P. Chaphalkar and A. D. Kelkar, “Classical laminate theory model for twill weave fabric composites,” Composites Part A: Applied Science and Manufacturing, vol. 32, no. 9, September, pp. 1281-1289, 2001. DOI: 10.1016/S1359-835X(01)00101-4
  • M. J. John and S. Thomas, “Biofibres and biocomposites,” Carbohydrate Polymers, vol. 71, no. 3, February, pp. 343–364, 2008. DOI: 10.1016/j.carbpol.2007.05.040
  • M. J. John and R. D. Anandjiwala, “Recent developments in chemical modification and characterization of natural fiber-reinforced composites,” Polymer Composites, vol. 29, no. 2, pp. 187–207,2008. DOI: 10.1002/pc.20461
  • T. Czigany, J. Vad and K. Poloskei, “Basalt fiber as a reinforcement of polymer composites,” Periodica Polytechnica Series Mechanical Engineering, vol. 49, no. 1, pp. 3–14, 2005.
  • T. Czigány, “Trends in fiber reinforcements– the future belongs to basalt fiber,” Express Polymer Letters, vol. 1, no. 2, p. 59, 2007.
  • K. A. Prasath and B. R. Krishnan, “Mechanical properties of woven fabric basalt/jute fibre reinforced polymer hybrid composites,” International Journal of Mechanical Engineering and Robotic Research, vol. 2, no. 4, October, pp. 279-290, 2013.
  • S. Matkó, S. Keszei, I. Csontos, P. Anna, G. Marosi, M. Zsuga, J. Borda and G. Nagy, “Fire retarded insulating sheets from recycled materials,” Macromolecular Symposia, vol. 233, no. 1, March, pp. 217–224, 2006. DOI: 10.1002/masy.200690021
  • M. C. Wang, Z. G. Zhang and Y. B. Li, “Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 27, no. 4, January, pp. 393–40, 2008. DOI: 10.1177/0731684407084119
  • M. Botev, H. Betchev, D. Bikiaris and C. Panayiotou, “Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene,” Journal of Applied Polymer Science, vol. 74, no. 3, August, pp. 523–531, 1999. DOI: 10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-R
  • A. A. Dalinkevich, K. Z. Gumargalieva, S. S. Marakhovsky and A. V. Soukhanov, “Modern basalt fibrous materials and basalt fiber-based polymeric composites,” Journal of Natural Fibers, vol. 6, no. 3, August, pp. 248–271, 2009. DOI: 10.1080/15440470903123173
  • Q. Liu, M. T. Shaw, R. S. Parnas and A. M. McDonnell, “Investigation of basalt fiber composite mechanical properties for applications in transportation,” Polymer Composites, vol. 27, no. 1, pp. 41–48, 2006. DOI: 10.1002/pc.20162
  • J. Militky and V. Kovacic, “Ultimate mechanical properties of basalt filaments,” Textile Research Journal, vol. 66, no. 4, April, pp. 225–229, 1996. DOI: 10.1177/004051759606600407
  • V. Sanchez-Galcez, R. Sancho, F. Galvez, D. Cendon and V. Rey-de-Pedraza, “High speed impact performance of basalt fiber reinforced vinylester composites at room and low temperatures,” International Journal of Lightweight Materials and Manufacture, vol. 3, no. 4, December, pp. 416-425, 2020. DOI: 10.1016/j.ijlmm.2020.05.006
  • N. Coughlin, B. Drake, M. Fjerstad, E. Schuster, T. Waege, A. Weerakkody, and T. Letcher, “Development and mechanical properties of basalt fiber-reinforced acrylonitrile butadiene styrene for in-space manufacturing applications,” Journal of Composite Science, vol. 3, no. 3, September, p. 89, 2019. DOI: 10.3390/jcs3030089
  • Z. Dong, G Wu, B. Xu, X. Wang and L. Taerwe, “Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction,” Materials and Design, vol. 92, February, 92, pp. 552-562, 2016. DOI: 10.1016/j.matdes.2015.12.066
  • Y. Li, Y. Wang and J. Ou, “Mechanical behavior of BFRP-steel composite plate under axial tension,” Polymers, vol. 6, no. 6, June, pp. 1862–1876, 2014. DOI: 10.3390/polym6061862
  • Y. Wang, Y.Wang, B. Wan, B. Han, G. Cai and R. Chang, “Strainanddamageself-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension,” Composistes Part A: Applied Science and Manufacturing, vol. 113, October, pp. 40-52, 2018. DOI: 10.1016/j.compositesa.2018.07.017
  • Z. Dong, G. Wu, X. L. Zhao, H. Zhu, Y. Wei and Z. Yan, “Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns,” Construction and Building Materials, vol. 244, May, 118330, 2020. DOI: 10.1016/j.conbuildmat.2020.118330
  • B. Wei, H. Cao and S. Song, “Environmental resistance and mechanical performance of basalt and glass fibers,” Materials Science and Engineering A, vol. 527, no. 18–19, July, 4708–15, 2010. DOI: 10.1016/j.msea.2010.04.021
  • G. Wu, X. Wang, Z. S. Wu, Z. Q. Dong and Q. Xie, “Degradation of basalt FRP bars in alkaline environment,” Science and Engineering of comopsite Materials, vol. 22, no. 6, July, pp. 649–657, 2014. DOI: 10.1515/secm-2014-0040
  • Y. Wang, W. Zhu, X. Zhang, G. Cai and B. Wan, “Influence of thickness on water absorption and tensile strength of BFRP laminates in water or alkaline solution and a thickness-dependent accelerated ageing method for BFRP laminates,” Applied Sciences, vol. 10, no. 10, 3618, 2020. DOI: 10.3390/app10103618
  • V. Nasir, H. Karimipour, F. Taheri-Behrooz and M. M. Shokrieh, “Corrosion behaviour and crack formation mechanism of basalt fibre in sulphuric acid,” Corrosion Science, vol. 64, November, pp. 1-7, 2012. DOI: 10.1016/j.corsci.2012.06.028
  • W. Mingchao, Z. Zuoguang, L. Yubin, L. Min and S. Zhijie, “Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 27, no. 4, pp. 393-407, 2008. DOI: 10.1177/0731684407084119
  • C. Tang, H. Jiang, X. Zhang, G. Li and J. Cui, “Corrosion behavior and mechanism of basalt fibers in sodium hydroxide solution,” Materials, vol. 11, no. 8, August,1381, 2018. DOI: 10.3390/ma11081381
  • X. Luo, Y. Wei, L. Ma, W. Tian and C. Zhu, “Effect of corrosive aging environments on the flexural properties of silane-coupling-agent-modified basalt-fiber-reinforced composites,” Materials, vol. 16, no. 4, February, 1543, 2023. DOI: 10.3390/ma16041543
  • V. Pastsuk, M. Kiisk, R. Lõhmus, M. Merisalu, S. Kovaljov, A. Biland and V. Gulik, “Selection of basalt fiber with resistance to concrete alkaline environment,” SN Applied Sciences, vol. 2, 1842, 2020. DOI: 10.1007/s42452-020-03677-z
  • V. A. Rybin, A. V. Utkin and N. I. Baklanova, “Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers,” Cement and Concrete Research, vol. 53, November, pp. 1-8, 2013. DOI: 10.1016/j.cemconres.2013.06.002
  • J. Liu, N. Li, M. Chen, J. Yang, B. Long and Z. Wu, “Durability of basalt fiber-reinforced polymer bars in wet-dry cycles alkali-salt corrosion,” Science and Engineering of Composite Materials, vol. 26, no. 1, pp. 43–52, 2019. DOI: 10.1515/secm-2018-0030
  • A. Taha, W. Alnahhal and N. Alnuaimi, “Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment,” Composite Structures, vol. 243, July, 112277, 2020. DOI: 10.1016/j.compstruct.2020.112277
  • H. Peng, Y. Lin, Z. Chen, S. Ma, L. Shangguan, R. Cheng and Y. Fan, “Effects of high temperature and different salt solutions on basalt fiber-reinforced composites’ bonded joint durability impact,” Coatings, vol. 13, no. 11, November, 1936, 2023. DOI: 10.3390/coatings13111936
  • V. Dhand, C. Hyunsuk, V. Kumar, S. Paul, M. R. Khawar and K. Rhee, “Enhanced corrosion resistance and mechanical integrity of Bi-Sn doped basalt fiber epoxy composites in seawater environments,” Alexandria Engineering Journal, vol. 116, March, pp. 621–632, 2025. DOI: 10.1016/j.aej.2024.12.100
  • G. Wu, X. Wang, Z. Wu, Z. Dong and G. Zhang, “Durability of basalt fibers and composites in corrosive environments,” Journal of Composite Materials, vol. 49, no. 7, pp. 1–15, 2014. DOI: 10.1177/0021998314526628
  • H. Ulus, H. B. Kaybal, V. Eskizeybek and A. Avcı, “Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites,” Fibers and Polymers, vol. 20, no. 10, pp. 2184-2199, 2019. DOI: doi.org/10.1007/s12221-019-9316-y
  • E. A. Esleman and G. Önal, “Three-point bending fatigue behavior of basalt-carbon-glass/epoxy hybrid composites under salt water environment,” Fatigue and Fracture of Engineering Materials and Structures, vol. 46, no. 7, pp. 2496–2509, 2023. DOI: 10.1111/ffe.14012
  • Y. Guo, J. Gao and J. Lv, “Experimental study on the frost resistance of basalt fiber reinforced concrete,” Materials, vol. 17, no. 18, 4593, 2024. DOI: 10.3390/ma17184593
  • A. Pandian, M. Vairavan, W. J. J. Thangaiah and M. Uthayakumar, “Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites,” Journal of Composites, vol. 2014, no. 1, 587980, 2014. DOI: 10.1155/2014/587980
  • M. Lia, H. Lia, G. Achagria, C. G. Lianga, M. Duanc, D. Xinga and P. C. Ma, “Mechanical and morphological variations of basalt fiber in seawater and a strategy to improve its performance with nanocomposite sizing,” Construction and Building Materials, vol. 420, March, 135582, 2024. DOI: 10.1016/j.conbuildmat.2024.135582
  • T. B. Péter, “The effect of salt water on the properties of basalt fibre reinforced composites,” Acta Materialia Transylvanica, vol. 6, no. 2, pp. 105–113, 2023. DOI: 10.33924/amt-2023-02-08
  • Q. Zhang, T. Yan, L. Luo, Q. Wang and J. Liu, “Effect of the properties of basalt fibers aging in salt solution,” Materials Science and Engineering, vol. 735, 012049, 2020. DOI: 10.1088/1757-899X/735/1/012049
  • J. Wei, Z. Wang, W. Sun and R. Yang, “Durability performance and corrosion mechanism of new basalt fiber concrete under organic water environment,” Materials, vol. 16, no. 1, 452, 2023. DOI: 10.3390/ma16010452
  • M. T. Rafat, T. Z. Shuchi, F. R. Evan and M. A. Rahman, “Mechanical and absorption properties of carbon-basalt and glass fiber reinforced composites: A comprehensive study with implications for advanced manufacturing technology,” Results in Materials, vol. 23, September, 100615, 2024. DOI: 10.1016/j.rinma.2024.100615
  • P. Anandh, P. Sivabalan, V. Mohanavel and T. Raja, “Investigation of basalt/kevlar fiber-reinforced porcelain filler infused epoxy composite: A viable alternative for marine applications,” Results in Engineering, vol. 25, March, 103928, 2025. DOI: 10.1016/j.rineng.2025.103928
  • A. O. Bonsu, C. Mensah, W. Liang, B. Yang and Y. Ma, “Mechanical degradation and failure analysis of different glass/basalt hybrid composite configuration in simulated marine condition,” Polymers, vol. 14, no. 17, 3480, 2022. DOI: 10.3390/polym14173480
  • A. V. Dasari and T. P. Kumar, “Experimental investigation on mechanical properties of basalt-core reinforced materials,” International Research Journal of Engineering and Technology, vol. 09, no. 08, August, pp. 1219-1225, 2022.
  • J. E. Bahaoui, I. Hanafi, M. Chairi and G. DiBella, “Effect of manufacturing processes on basalt fiber-reinforced composites for marine applications,” Journal of Composite Science, vol. 9, no. 5, 233, 2025. DOI: 10.3390/jcs9050233
  • D. D’Andrea, F. Salmeri, G. Di Bella, M. Totaro and G. Risitano, “Replacing glass with basalt in the vacuum infusion process of vinyl ester composite laminates: Effect on the mechanical performance and life cycle assessment (LCA),” Journal of Composite Science, vol. 9, no. 6, 308, 2025. DOI: 10.3390/jcs9060308
  • C. Borsellino, M. Chairi, J. El Bahaoui, F. Favaloro, F. Galantini and G. Di Bella, “Static indentation properties of basalt fiber reinforced composites for naval applications,” Materials Research Proceedings, vol. 35, pp. 350-358, 2023. DOI: 10.21741/9781644902714-42
  • S. Nayak and M. P. Kumar, “Mechanical characterization and static analysis of natural fiber based composite propeller blade,” Joint Journal of Novel Carbon Resource Sciences and Green Asia Strategy, vol. 10, no. 2, pp. 805-812, 2023. DOI: 10.5109/6792832
  • A. Hiremath, S. Y. Nayak, S. S. Heckadka and J. J. Pramod, “Mechanical behavior of basalt reinforced epoxy composites modified with biomass derived seashell powder,” Biomass Conversion and Biorefinery, vol. 14, pp. 26281–26291, 2024. DOI: 10.1007/s13399-023-04571-5
  • P. T. Bényei and P. Sántha, “Potential applications of basalt fibre composites in thermal shielding,” Journal of Thermal Analysis and Calorimetry, vol. 148, pp. 271–279, 2023. DOI: 10.1007/s10973-022-11799-2

Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments

Yıl 2025, Cilt: 9 Sayı: 2, 194 - 202, 29.12.2025
https://doi.org/10.47897/bilmes.1809705

Öz

This review summarizes current research examining the corrosion resistance, aging behavior, and mechanical properties of basalt fiber-reinforced polymer (BFTP) composites in marine applications. Naturally derived basalt fiber offers a strong alternative to glass and carbon fibers thanks to its high strength, thermal/chemical stability, low cost, and environmentally friendly structure. Findings indicate that BFTP composites exhibit high corrosion resistance, particularly in challenging environments such as acidic and seawater, and offer superior performance to vinylester resin systems. Surface treatments with silane, zircon, nanotubes, and metal additives also significantly enhance mechanical and corrosion resistance. BFTP composites, which have proven successful in marine hulls, propellers, and structural components, stand out for their low water absorption, high tensile/flexural strength, good fatigue resistance, and high-temperature resistance. Life cycle analyses indicate that they offer a lower carbon footprint compared to glass fiber composites. These properties make BFTP composites a sustainable and cost-effective alternative material for the maritime industry.

Kaynakça

  • B. S. Kantraju, B. Suresha and M.S. Saini, “Effect of type and filler loading on the static mechanical properties of glass-basalt hybrid fabric reinforced epoxy composites,” International Journal of Advances in Production and Mechanical Engineering, vol. 1, no. 5, pp. 60-70, 2015.
  • R. Teti, “Machining of composite materials,” CIRP Annals Manufacturing Technology, vol. 51, no. 2, pp. 611-634, 2002. DOI: 10.1016/S0007-8506(07)61703-X
  • C. Colombo, L. Vergani and M. Burman, “Static and fatigue characterization of new basalt fibre reinforced composites,” Composite Structures, vol. 94, no. 3, February, pp. 1165–1174, 2012. DOI: 10.1016/j.compstruct.2011.10.007
  • A. Ross, “Basalt fibers: Alternative to glass?,” Composites Technology, vol. 12, no. 4, pp. 44–48, 2006.
  • D. Pavlovski, B. Mislavsky and A. Antonov, “CNG cylinder manufacturers test basalt fibre,” Reinforced Plastics, vol. 51, no. 4, April, pp. 36–37, 2007. DOI: 10.1016/S0034-3617(07)70152-2
  • H. Jamshaid, J. Militký, R. Mishra and L. Koukolikova, “Basalt fibers and their composites,” Novelties in Materials Science, vol. 4, pp. 2-61, 2017.
  • P. Chaphalkar and A. D. Kelkar, “Classical laminate theory model for twill weave fabric composites,” Composites Part A: Applied Science and Manufacturing, vol. 32, no. 9, September, pp. 1281-1289, 2001. DOI: 10.1016/S1359-835X(01)00101-4
  • M. J. John and S. Thomas, “Biofibres and biocomposites,” Carbohydrate Polymers, vol. 71, no. 3, February, pp. 343–364, 2008. DOI: 10.1016/j.carbpol.2007.05.040
  • M. J. John and R. D. Anandjiwala, “Recent developments in chemical modification and characterization of natural fiber-reinforced composites,” Polymer Composites, vol. 29, no. 2, pp. 187–207,2008. DOI: 10.1002/pc.20461
  • T. Czigany, J. Vad and K. Poloskei, “Basalt fiber as a reinforcement of polymer composites,” Periodica Polytechnica Series Mechanical Engineering, vol. 49, no. 1, pp. 3–14, 2005.
  • T. Czigány, “Trends in fiber reinforcements– the future belongs to basalt fiber,” Express Polymer Letters, vol. 1, no. 2, p. 59, 2007.
  • K. A. Prasath and B. R. Krishnan, “Mechanical properties of woven fabric basalt/jute fibre reinforced polymer hybrid composites,” International Journal of Mechanical Engineering and Robotic Research, vol. 2, no. 4, October, pp. 279-290, 2013.
  • S. Matkó, S. Keszei, I. Csontos, P. Anna, G. Marosi, M. Zsuga, J. Borda and G. Nagy, “Fire retarded insulating sheets from recycled materials,” Macromolecular Symposia, vol. 233, no. 1, March, pp. 217–224, 2006. DOI: 10.1002/masy.200690021
  • M. C. Wang, Z. G. Zhang and Y. B. Li, “Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 27, no. 4, January, pp. 393–40, 2008. DOI: 10.1177/0731684407084119
  • M. Botev, H. Betchev, D. Bikiaris and C. Panayiotou, “Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene,” Journal of Applied Polymer Science, vol. 74, no. 3, August, pp. 523–531, 1999. DOI: 10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-R
  • A. A. Dalinkevich, K. Z. Gumargalieva, S. S. Marakhovsky and A. V. Soukhanov, “Modern basalt fibrous materials and basalt fiber-based polymeric composites,” Journal of Natural Fibers, vol. 6, no. 3, August, pp. 248–271, 2009. DOI: 10.1080/15440470903123173
  • Q. Liu, M. T. Shaw, R. S. Parnas and A. M. McDonnell, “Investigation of basalt fiber composite mechanical properties for applications in transportation,” Polymer Composites, vol. 27, no. 1, pp. 41–48, 2006. DOI: 10.1002/pc.20162
  • J. Militky and V. Kovacic, “Ultimate mechanical properties of basalt filaments,” Textile Research Journal, vol. 66, no. 4, April, pp. 225–229, 1996. DOI: 10.1177/004051759606600407
  • V. Sanchez-Galcez, R. Sancho, F. Galvez, D. Cendon and V. Rey-de-Pedraza, “High speed impact performance of basalt fiber reinforced vinylester composites at room and low temperatures,” International Journal of Lightweight Materials and Manufacture, vol. 3, no. 4, December, pp. 416-425, 2020. DOI: 10.1016/j.ijlmm.2020.05.006
  • N. Coughlin, B. Drake, M. Fjerstad, E. Schuster, T. Waege, A. Weerakkody, and T. Letcher, “Development and mechanical properties of basalt fiber-reinforced acrylonitrile butadiene styrene for in-space manufacturing applications,” Journal of Composite Science, vol. 3, no. 3, September, p. 89, 2019. DOI: 10.3390/jcs3030089
  • Z. Dong, G Wu, B. Xu, X. Wang and L. Taerwe, “Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction,” Materials and Design, vol. 92, February, 92, pp. 552-562, 2016. DOI: 10.1016/j.matdes.2015.12.066
  • Y. Li, Y. Wang and J. Ou, “Mechanical behavior of BFRP-steel composite plate under axial tension,” Polymers, vol. 6, no. 6, June, pp. 1862–1876, 2014. DOI: 10.3390/polym6061862
  • Y. Wang, Y.Wang, B. Wan, B. Han, G. Cai and R. Chang, “Strainanddamageself-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension,” Composistes Part A: Applied Science and Manufacturing, vol. 113, October, pp. 40-52, 2018. DOI: 10.1016/j.compositesa.2018.07.017
  • Z. Dong, G. Wu, X. L. Zhao, H. Zhu, Y. Wei and Z. Yan, “Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns,” Construction and Building Materials, vol. 244, May, 118330, 2020. DOI: 10.1016/j.conbuildmat.2020.118330
  • B. Wei, H. Cao and S. Song, “Environmental resistance and mechanical performance of basalt and glass fibers,” Materials Science and Engineering A, vol. 527, no. 18–19, July, 4708–15, 2010. DOI: 10.1016/j.msea.2010.04.021
  • G. Wu, X. Wang, Z. S. Wu, Z. Q. Dong and Q. Xie, “Degradation of basalt FRP bars in alkaline environment,” Science and Engineering of comopsite Materials, vol. 22, no. 6, July, pp. 649–657, 2014. DOI: 10.1515/secm-2014-0040
  • Y. Wang, W. Zhu, X. Zhang, G. Cai and B. Wan, “Influence of thickness on water absorption and tensile strength of BFRP laminates in water or alkaline solution and a thickness-dependent accelerated ageing method for BFRP laminates,” Applied Sciences, vol. 10, no. 10, 3618, 2020. DOI: 10.3390/app10103618
  • V. Nasir, H. Karimipour, F. Taheri-Behrooz and M. M. Shokrieh, “Corrosion behaviour and crack formation mechanism of basalt fibre in sulphuric acid,” Corrosion Science, vol. 64, November, pp. 1-7, 2012. DOI: 10.1016/j.corsci.2012.06.028
  • W. Mingchao, Z. Zuoguang, L. Yubin, L. Min and S. Zhijie, “Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 27, no. 4, pp. 393-407, 2008. DOI: 10.1177/0731684407084119
  • C. Tang, H. Jiang, X. Zhang, G. Li and J. Cui, “Corrosion behavior and mechanism of basalt fibers in sodium hydroxide solution,” Materials, vol. 11, no. 8, August,1381, 2018. DOI: 10.3390/ma11081381
  • X. Luo, Y. Wei, L. Ma, W. Tian and C. Zhu, “Effect of corrosive aging environments on the flexural properties of silane-coupling-agent-modified basalt-fiber-reinforced composites,” Materials, vol. 16, no. 4, February, 1543, 2023. DOI: 10.3390/ma16041543
  • V. Pastsuk, M. Kiisk, R. Lõhmus, M. Merisalu, S. Kovaljov, A. Biland and V. Gulik, “Selection of basalt fiber with resistance to concrete alkaline environment,” SN Applied Sciences, vol. 2, 1842, 2020. DOI: 10.1007/s42452-020-03677-z
  • V. A. Rybin, A. V. Utkin and N. I. Baklanova, “Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers,” Cement and Concrete Research, vol. 53, November, pp. 1-8, 2013. DOI: 10.1016/j.cemconres.2013.06.002
  • J. Liu, N. Li, M. Chen, J. Yang, B. Long and Z. Wu, “Durability of basalt fiber-reinforced polymer bars in wet-dry cycles alkali-salt corrosion,” Science and Engineering of Composite Materials, vol. 26, no. 1, pp. 43–52, 2019. DOI: 10.1515/secm-2018-0030
  • A. Taha, W. Alnahhal and N. Alnuaimi, “Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment,” Composite Structures, vol. 243, July, 112277, 2020. DOI: 10.1016/j.compstruct.2020.112277
  • H. Peng, Y. Lin, Z. Chen, S. Ma, L. Shangguan, R. Cheng and Y. Fan, “Effects of high temperature and different salt solutions on basalt fiber-reinforced composites’ bonded joint durability impact,” Coatings, vol. 13, no. 11, November, 1936, 2023. DOI: 10.3390/coatings13111936
  • V. Dhand, C. Hyunsuk, V. Kumar, S. Paul, M. R. Khawar and K. Rhee, “Enhanced corrosion resistance and mechanical integrity of Bi-Sn doped basalt fiber epoxy composites in seawater environments,” Alexandria Engineering Journal, vol. 116, March, pp. 621–632, 2025. DOI: 10.1016/j.aej.2024.12.100
  • G. Wu, X. Wang, Z. Wu, Z. Dong and G. Zhang, “Durability of basalt fibers and composites in corrosive environments,” Journal of Composite Materials, vol. 49, no. 7, pp. 1–15, 2014. DOI: 10.1177/0021998314526628
  • H. Ulus, H. B. Kaybal, V. Eskizeybek and A. Avcı, “Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites,” Fibers and Polymers, vol. 20, no. 10, pp. 2184-2199, 2019. DOI: doi.org/10.1007/s12221-019-9316-y
  • E. A. Esleman and G. Önal, “Three-point bending fatigue behavior of basalt-carbon-glass/epoxy hybrid composites under salt water environment,” Fatigue and Fracture of Engineering Materials and Structures, vol. 46, no. 7, pp. 2496–2509, 2023. DOI: 10.1111/ffe.14012
  • Y. Guo, J. Gao and J. Lv, “Experimental study on the frost resistance of basalt fiber reinforced concrete,” Materials, vol. 17, no. 18, 4593, 2024. DOI: 10.3390/ma17184593
  • A. Pandian, M. Vairavan, W. J. J. Thangaiah and M. Uthayakumar, “Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites,” Journal of Composites, vol. 2014, no. 1, 587980, 2014. DOI: 10.1155/2014/587980
  • M. Lia, H. Lia, G. Achagria, C. G. Lianga, M. Duanc, D. Xinga and P. C. Ma, “Mechanical and morphological variations of basalt fiber in seawater and a strategy to improve its performance with nanocomposite sizing,” Construction and Building Materials, vol. 420, March, 135582, 2024. DOI: 10.1016/j.conbuildmat.2024.135582
  • T. B. Péter, “The effect of salt water on the properties of basalt fibre reinforced composites,” Acta Materialia Transylvanica, vol. 6, no. 2, pp. 105–113, 2023. DOI: 10.33924/amt-2023-02-08
  • Q. Zhang, T. Yan, L. Luo, Q. Wang and J. Liu, “Effect of the properties of basalt fibers aging in salt solution,” Materials Science and Engineering, vol. 735, 012049, 2020. DOI: 10.1088/1757-899X/735/1/012049
  • J. Wei, Z. Wang, W. Sun and R. Yang, “Durability performance and corrosion mechanism of new basalt fiber concrete under organic water environment,” Materials, vol. 16, no. 1, 452, 2023. DOI: 10.3390/ma16010452
  • M. T. Rafat, T. Z. Shuchi, F. R. Evan and M. A. Rahman, “Mechanical and absorption properties of carbon-basalt and glass fiber reinforced composites: A comprehensive study with implications for advanced manufacturing technology,” Results in Materials, vol. 23, September, 100615, 2024. DOI: 10.1016/j.rinma.2024.100615
  • P. Anandh, P. Sivabalan, V. Mohanavel and T. Raja, “Investigation of basalt/kevlar fiber-reinforced porcelain filler infused epoxy composite: A viable alternative for marine applications,” Results in Engineering, vol. 25, March, 103928, 2025. DOI: 10.1016/j.rineng.2025.103928
  • A. O. Bonsu, C. Mensah, W. Liang, B. Yang and Y. Ma, “Mechanical degradation and failure analysis of different glass/basalt hybrid composite configuration in simulated marine condition,” Polymers, vol. 14, no. 17, 3480, 2022. DOI: 10.3390/polym14173480
  • A. V. Dasari and T. P. Kumar, “Experimental investigation on mechanical properties of basalt-core reinforced materials,” International Research Journal of Engineering and Technology, vol. 09, no. 08, August, pp. 1219-1225, 2022.
  • J. E. Bahaoui, I. Hanafi, M. Chairi and G. DiBella, “Effect of manufacturing processes on basalt fiber-reinforced composites for marine applications,” Journal of Composite Science, vol. 9, no. 5, 233, 2025. DOI: 10.3390/jcs9050233
  • D. D’Andrea, F. Salmeri, G. Di Bella, M. Totaro and G. Risitano, “Replacing glass with basalt in the vacuum infusion process of vinyl ester composite laminates: Effect on the mechanical performance and life cycle assessment (LCA),” Journal of Composite Science, vol. 9, no. 6, 308, 2025. DOI: 10.3390/jcs9060308
  • C. Borsellino, M. Chairi, J. El Bahaoui, F. Favaloro, F. Galantini and G. Di Bella, “Static indentation properties of basalt fiber reinforced composites for naval applications,” Materials Research Proceedings, vol. 35, pp. 350-358, 2023. DOI: 10.21741/9781644902714-42
  • S. Nayak and M. P. Kumar, “Mechanical characterization and static analysis of natural fiber based composite propeller blade,” Joint Journal of Novel Carbon Resource Sciences and Green Asia Strategy, vol. 10, no. 2, pp. 805-812, 2023. DOI: 10.5109/6792832
  • A. Hiremath, S. Y. Nayak, S. S. Heckadka and J. J. Pramod, “Mechanical behavior of basalt reinforced epoxy composites modified with biomass derived seashell powder,” Biomass Conversion and Biorefinery, vol. 14, pp. 26281–26291, 2024. DOI: 10.1007/s13399-023-04571-5
  • P. T. Bényei and P. Sántha, “Potential applications of basalt fibre composites in thermal shielding,” Journal of Thermal Analysis and Calorimetry, vol. 148, pp. 271–279, 2023. DOI: 10.1007/s10973-022-11799-2
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Derleme
Yazarlar

Öner Haşim Olgun 0000-0002-6940-3954

Uğur Çavdar 0000-0002-3434-6670

Gönderilme Tarihi 23 Ekim 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Olgun, Ö. H., & Çavdar, U. (2025). Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments. International Scientific and Vocational Studies Journal, 9(2), 194-202. https://doi.org/10.47897/bilmes.1809705
AMA Olgun ÖH, Çavdar U. Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments. ISVOS. Aralık 2025;9(2):194-202. doi:10.47897/bilmes.1809705
Chicago Olgun, Öner Haşim, ve Uğur Çavdar. “Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments”. International Scientific and Vocational Studies Journal 9, sy. 2 (Aralık 2025): 194-202. https://doi.org/10.47897/bilmes.1809705.
EndNote Olgun ÖH, Çavdar U (01 Aralık 2025) Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments. International Scientific and Vocational Studies Journal 9 2 194–202.
IEEE Ö. H. Olgun ve U. Çavdar, “Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments”, ISVOS, c. 9, sy. 2, ss. 194–202, 2025, doi: 10.47897/bilmes.1809705.
ISNAD Olgun, Öner Haşim - Çavdar, Uğur. “Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments”. International Scientific and Vocational Studies Journal 9/2 (Aralık2025), 194-202. https://doi.org/10.47897/bilmes.1809705.
JAMA Olgun ÖH, Çavdar U. Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments. ISVOS. 2025;9:194–202.
MLA Olgun, Öner Haşim ve Uğur Çavdar. “Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments”. International Scientific and Vocational Studies Journal, c. 9, sy. 2, 2025, ss. 194-02, doi:10.47897/bilmes.1809705.
Vancouver Olgun ÖH, Çavdar U. Corrosion Resistance of Basalt Fiber Reinforced Composites for Marine Applications: Investigation of Mechanical Properties in Acidic, Alkaline, and Seawater Environments. ISVOS. 2025;9(2):194-202.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License