Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 1527 - 1534, 31.12.2021
https://doi.org/10.17798/bitlisfen.981929

Öz

Kaynakça

  • [1] Pinar, Z., Kocak, H. 2018. Exact solutions for the third-order dispersive-Fisher equations. Nonlinear Dynamics, 91(1), 421-426.
  • [2] Ding, L., Ma, W. X., Chen, Q., Huang, Y. 2021. Lump solutions of a nonlinear PDE containing a third-order derivative of time. Applied Mathematics Letters, 112, 106809.
  • [3] Rui, W., He, B., Long, Y., Chen, C. 2008. The integral bifurcation method and its application for solving a family of third-order dispersive PDEs. Nonlinear Analysis: Theory, Methods & Applications, 69(4), 1256-1267.
  • [4] Manafian, J., Mohammed, SA, Alizadeh, AA, Baskonus, HM ve Gao, W. 2020. Sığ su üzerinde uzun dalgaların yayılmasından kaynaklanan üçüncü dereceden evrim denklemi için yumru ve etkileşiminin araştırılması. European Journal of Mechanics-B/Fluids , 84 , 289-301.
  • [5] González-Pinto, S., Hernández-Abreu, D., Pérez-Rodríguez, S., Weiner, R. 2016. A family of three-stage third order AMF-W-methods for the time integration of advection diffusion reaction PDEs. Applied Mathematics and Computation, 274, 565-584. [6] Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H. 2015. Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion. Nonlinear Dynamics, 80(3), 1365-1371.
  • [7] Mary, D. S.1985. Analysis of an implicit finite-difference scheme for a third-order partial differential equation in three dimensions. Computers & Mathematics with Applications, 11(7-8), 873-885.
  • [8] Loghmani, G. B., Ahmadinia, M. 2006. Numerical solution of third-order boundary value problems.
  • [9] Gordon, R. K., Hutchcraft, W. E. 2001. Higher order wavelet-like basis functions in the numerical solution of partial differential equations using the finite element method. In Proceedings of the 33rd Southeastern Symposium on System Theory (Cat. No. 01EX460) (pp. 391-394). IEEE.
  • [10] Chavan, S. S., Panchal, M. M. 2014. Solution of third order Korteweg-De Vries equation by homotopy perturbation method using Elzaki transform. Int J Res Appl Sci Eng Technol, 2, 366-9. [11] Koksal, M., Koksal, M. E. 2015. Commutativity of cascade connected discrete-time linear time-varying systems. Transactions of the Institute of Measurement and Control, 37(5), 615-622.
  • [12] He, J.H. 1999. Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178, 257.
  • [13] He,J.H. 2000. A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-linear Mech. 35 (1).

Üçüncü Mertebeden Kısmi Diferansiyel Denklemin Homotopy Pertürbasyon Metodu ile Çözümü

Yıl 2021, , 1527 - 1534, 31.12.2021
https://doi.org/10.17798/bitlisfen.981929

Öz

Bu çalışmada, üçüncü mertebeden kısmi diferansiyel denklemin çözümü homotopy pertürbasyon metodu ile elde edildi. Bu denklemin çözümü için homotopy pertürbasyon metodu oluşturuldu. Bu metot kullanılarak bir örnek problem üzerinde denklemin çözümü bulundu. Elde edilen çözümün tam çözüme denk olduğu görüldü. Matlab programı kullanılarak çözüm için grafikler verildi

Kaynakça

  • [1] Pinar, Z., Kocak, H. 2018. Exact solutions for the third-order dispersive-Fisher equations. Nonlinear Dynamics, 91(1), 421-426.
  • [2] Ding, L., Ma, W. X., Chen, Q., Huang, Y. 2021. Lump solutions of a nonlinear PDE containing a third-order derivative of time. Applied Mathematics Letters, 112, 106809.
  • [3] Rui, W., He, B., Long, Y., Chen, C. 2008. The integral bifurcation method and its application for solving a family of third-order dispersive PDEs. Nonlinear Analysis: Theory, Methods & Applications, 69(4), 1256-1267.
  • [4] Manafian, J., Mohammed, SA, Alizadeh, AA, Baskonus, HM ve Gao, W. 2020. Sığ su üzerinde uzun dalgaların yayılmasından kaynaklanan üçüncü dereceden evrim denklemi için yumru ve etkileşiminin araştırılması. European Journal of Mechanics-B/Fluids , 84 , 289-301.
  • [5] González-Pinto, S., Hernández-Abreu, D., Pérez-Rodríguez, S., Weiner, R. 2016. A family of three-stage third order AMF-W-methods for the time integration of advection diffusion reaction PDEs. Applied Mathematics and Computation, 274, 565-584. [6] Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H. 2015. Exact optical solitons in metamaterials with cubic–quintic nonlinearity and third-order dispersion. Nonlinear Dynamics, 80(3), 1365-1371.
  • [7] Mary, D. S.1985. Analysis of an implicit finite-difference scheme for a third-order partial differential equation in three dimensions. Computers & Mathematics with Applications, 11(7-8), 873-885.
  • [8] Loghmani, G. B., Ahmadinia, M. 2006. Numerical solution of third-order boundary value problems.
  • [9] Gordon, R. K., Hutchcraft, W. E. 2001. Higher order wavelet-like basis functions in the numerical solution of partial differential equations using the finite element method. In Proceedings of the 33rd Southeastern Symposium on System Theory (Cat. No. 01EX460) (pp. 391-394). IEEE.
  • [10] Chavan, S. S., Panchal, M. M. 2014. Solution of third order Korteweg-De Vries equation by homotopy perturbation method using Elzaki transform. Int J Res Appl Sci Eng Technol, 2, 366-9. [11] Koksal, M., Koksal, M. E. 2015. Commutativity of cascade connected discrete-time linear time-varying systems. Transactions of the Institute of Measurement and Control, 37(5), 615-622.
  • [12] He, J.H. 1999. Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178, 257.
  • [13] He,J.H. 2000. A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-linear Mech. 35 (1).
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mahmut Modanlı 0000-0002-7743-3512

Hüseyin Eş 0000-0002-4860-0502

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 12 Ağustos 2021
Kabul Tarihi 2 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE M. Modanlı ve H. Eş, “Üçüncü Mertebeden Kısmi Diferansiyel Denklemin Homotopy Pertürbasyon Metodu ile Çözümü”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 4, ss. 1527–1534, 2021, doi: 10.17798/bitlisfen.981929.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr