Derleme
BibTex RIS Kaynak Göster

AN ALTERNATIVE RESOURCE FOR SUPPORTING HEALTH AND SUSTAINABLE NUTRITION: ALGAE

Yıl 2020, , 221 - 237, 22.12.2020
https://doi.org/10.46413/boneyusbad.795543

Öz

With the increase of the population, it is thought that problems related to nutrition will increase and alternative food sources are sought. Algae are among the alternative sources with their large biomass and rich biodiversity. It can produce high amounts of macro and micronutrients, depending on the types and environmental conditions. It is especially rich in protein and essential amino acids, eicosapentaenoic acid, docosahexaenoic acid, antioxidant vitamins, iron and iodine. It also contains many bioactive substances such as antioxidants, phenolic compounds, polysaccharides and lutein. In this way, it is used as an alternative in some societies for health promotion and disease prevention. Also, it can cause adverse effects such as heavy metal, toxins and allergenic agents. In order to benefit from algae at the highest level, it is necessary to increase scientific research in this field, to conduct risk analysis, to establish legislation and to develop global policies.

Kaynakça

  • Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial cell factories, 11(1), 96. doi: 10.1186/1475-2859-11-96.
  • Ali, A. Y., Idris, A. M., Eltayeb, M. A., El-Zahhar, A. A., & Ashraf, I. M. (2019). Bioaccumulation and health risk assessment of toxic metals in red algae in Sudanese Red Sea coast. Toxin reviews, 1-11. doi: 10.1080/15569543.2019.1697886.
  • Basheer, S., Huo, S., Zhu, F., Qian, J., Xu, L., Cui, F. et al. (2020). Microalgae in human health and medicine. In: Alam, A., Xu, J. L., Wang, Z. (ed). Microalgae Biotechnology for Food, Health and High Value Products (pp. 149-174). Springer, Singapore. doi: 10.1007/978-981-15-0169-2_5.
  • Barahona, T., Encinas, M. V., Mansilla, A., Matsuhiro, B., & Zúñiga, E. A. (2012). A sulfated galactan with antioxidant capacity from the green variant of tetrasporic Gigartina skottsbergii (Gigartinales, Rhodophyta). Carbohydrate Research, 347(1), 114-120. doi: 10.1016/j.carres.2011.11.014.
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
  • Benjama, O., & Masniyom, P. (2012). Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Sonklanakarin Journal of Science and Technology, 34(2), 223.
  • Boğaziçi Üniversitesi. (2017). İstanbul mikroyosun biyoteknolojileri araştırma ve geliştirme birimi (İMBİYOTAB). Erişim Tarihi 02.09.2020, https://imbiyotab.boun.edu.tr/
  • Borowitzka, M. A. (2013). Dunaliella: biology, production, and markets. In: Richmond A., & Hu, Q., (ed). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, (pp 359-368). John Wiley & Sons. doi: 10.1002/9781118567166.ch18
  • Cabrita, A. R., Maia, M. R., Oliveira, H. M., Sousa-Pinto, I., Almeida, A. A., Pinto, E. et al. (2016). Tracing seaweeds as mineral sources for farm-animals. Journal of applied phycology, 28(5), 3135-3150. doi: 10.1007/s10811-016-0839-y.
  • Chacón‐Lee, T. L., & González‐Mariño, G. E. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive reviews in food science and food safety, 9(6), 655-675. doi: 10.1111/j.1541-4337.2010.00132.x.
  • Cheney, D. (2016). Toxic and harmful seaweeds. In: Fleurence, J., & Levine, I. (Ed) Seaweed in health and disease prevention (pp. 407-421). Academic Press. doi: 10.1016/B978-0-12-802772-1.00013-0.
  • Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez-Augustin, O. (2015). Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Marine drugs, 13(8), 5358-5383. doi: 10.3390/md13085358.
  • Costa, J. A. V., Moreira, J. B., Fanka, L. S., da Costa Kosinski, R., & de Morais, M. G. (2020). Microalgal biotechnology applied in biomedicine. In: Konur, Ö. (ed). Handbook of Algal Science, Technology and Medicine (pp. 429-439). Academic Press. doi: 10.1016/B978-0-12-818305-2.00027-9
  • Dhargalkar, V. (2015). Uses of seaweeds in the Indian diet for sustenance and well-being. Sci Cult, 80, 192-202.
  • Duffy, L. C., Raiten, D. J., Hubbard, V. S., & Starke-Reed, P. (2015). Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. The Journal of nutrition, 145(5), 1123S-1130S. doi: 10.3945/jn.114.194936.
  • FAO. (2018). The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals. Erişim Tarihi 02.09.2020, http://www.fao.org/documents/card/en/c/I9540EN/
  • FAO, IFAD, UNICEF, WFP & WHO. (2017). The state of food security and nutrition in the world. Building resilience for peace and food security. Erişim Tarihi 02.09.2020, http://www.fao.org/3/a-i7695e.pdf
  • FDA. (2019). Generally recognized as safe (GRAS). Erişim Tarihi 02.09.2020, https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras
  • Ferraces-Casais, P., Lage-Yusty, M. A., De Quirós, A. R. B., & López-Hernández, J. (2012). Evaluation of bioactive compounds in fresh edible seaweeds. Food Analytical Methods, 5(4), 828-834. doi: 10.1007/s12161-011-9321-2.
  • Fields, F. J., Lejzerowicz, F., Schroeder, D., Ngoi, S. M., Tran, M., McDonald, D., et al. (2020). Effects of the microalgae Chlamydomonas on gastrointestinal health. Journal of Functional Foods, 65, 103738. doi: 10.1016/j.jff.2019.103738.
  • Francesconi, K. A. (2010). Arsenic species in seafood: origin and human health implications. Pure and Applied Chemistry, 82(2), 373-381. doi: 10.1351/PAC-CON-09-07-01.
  • Gaillande, C., Payri, C., Remoissenet, G., & Zubia, M. (2017). Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. Journal of Applied Phycology, 29(5), 2249-2266.doi: 10.1007/s10811-016-0912-6.
  • García-Casal, M. N., Pereira, A. C., Leets, I., Ramírez, J., & Quiroga, M. F. (2007). High iron content and bioavailability in humans from four species of marine algae. The Journal of Nutrition, 137(12), 2691-2695. doi: 10.1093/jn/137.12.2691.
  • García-Casal, M. N., Ramirez, J., Leets, I., Pereira, A. C., & Quiroga, M. F. (2008). Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. British Journal of Nutrition, 101(1), 79-85. doi: 10.1017/S0007114508994757.
  • Gerberş P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Erişim Tarihi 02.09.2020, http://www.fao.org/3/a-i3437e.pdf
  • Griffin, J. A. (2015). An Investigative Study Into the Beneficial Use of Seaweed in Bread and the Broader Food Industry. Erişim Tarihi 02.09.2020, https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1000&context=tfschcafdis
  • Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of applied phycology, 21(5), 493-507. doi: 10.1007/s10811-008-9392-7.
  • Gómez-Zorita, S., Trepiana, J., González-Arceo, M., Aguirre, L., Milton-Laskibar, I., González, M. et al. (2020). Anti-Obesity Effects of Microalgae. International Journal of Molecular Sciences, 21(1), 41. doi: 10.3390/ijms21010041.
  • Gutiérrez-Pliego, L. E., Martínez-Carrillo, B. E., Reséndiz-Albor, A. A., & Valdés-Ramos, R. (2020). Effect on adipose tissue of diabetic mice supplemented with n-3 fatty acids extracted from microalgae. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 20(5), 728-735. doi: 10.2174/1871530320666200213111452.
  • Helliwell, K. E., Lawrence, A. D., Holzer, A., Kudahl, U. J., Sasso, S., Kräutler, et al. (2016). Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology, 26(8), 999-1008. doi: 10.1016/j.cub.2016.02.041.
  • Helliwell, K. E., Wheeler, G. L., Leptos, K. C., Goldstein, R. E., & Smith, A. G. (2011). Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Molecular biology and evolution, 28(10), 2921-2933. doi: 10.1093/molbev/msr124.
  • Helliwell, K. E., Wheeler, G. L., & Smith, A. G. (2013). Widespread decay of vitamin-related pathways: coincidence or consequence?. Trends in Genetics, 29(8), 469-478. doi: 10.1016/j.tig.2013.03.003.
  • Hernández-Carmona, G., Carrillo-Domínguez, S., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Murillo-Álvarez, J. I., Muñoz-Ochoa, M., et al. (2009). Monthly variation in the chemical composition of Eisenia arborea JE Areschoug. Journal of applied phycology, 21(5), 607-616. doi: 10.1007/s10811-009-9454-5.
  • Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 13(5), 2967-3028. doi: 10.3390/md13052967.
  • Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46, 101800. doi: 10.1016/j.algal.2020.101800.
  • Kinnaert, C., Daugaard, M., Nami, F., & Clausen, M. H. (2017). Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chemical reviews, 117(17), 11337-11405. doi: 10.1021/acs.chemrev.7b00162.
  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal research, 6, 52-63. doi: 10.1016/j.algal.2014.09.002.
  • Le, T. M., Knulst, A. C., & Röckmann, H. (2014). Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food and Chemical Toxicology, 74, 309-310. doi: 10.1016/j.fct.2014.10.024.
  • Ling, A. L. M., Yasir, S., Matanjun, P., & Bakar, M. F. A. (2015). Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. Journal of Applied Phycology, 27(4), 1717-1723. doi: 10.1007/s10811-014-0467-3.
  • Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T., & Zhao, M. (2018). Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture, 497, 49-55. doi: 10.1016/j.aquaculture.2018.07.040.
  • Maraşlıoğlu, F & Gönülol, A. (2019) Turkish algae electronic publication, Çorum, Turkey. http://turkiyealgleri.hitit.edu.tr/ilgi.php Erişim Tarihi 02.09.2020, http://turkiyealgleri.hitit.edu.tr/.
  • Michikawa, T., Inoue, M., Shimazu, T., Sawada, N., Iwasaki, M., Sasazuki, S, et al. (2012). Seaweed consumption and the risk of thyroid cancer in women: the Japan Public Health Center-based Prospective Study. European Journal of Cancer Prevention, 21(3), 254-260. doi: 10.1097/CEJ.0b013e32834a8042.
  • Miyai, K., Tokushige, T., Kondo, M., & Iodine Research Group. (2008). Suppression of thyroid function during ingestion of seaweed" Kombu"(Laminaria japonoca) in normal Japanese adults. Endocrine journal, 55(6), 1103-1108. doi: 10.1507/endocrj.K08E-125.
  • Mujeeb, M. A., Vedamurthy, A., Shettar, A. K., Puranik, S. I., Ghagane, S., Thimmappa, S. C. (2020). In vitro anti-oxidant and anti-cancer activity of tetradesmus acuminatus microalgae extract on MCF-7 human breast cancer cell line. International Journal of Cancer Research, 16(1), 1-9. doi: 10.3923/ijcr.2020.1.9.
  • Nascimento, T. C., Cazarin, C. B. B., Maróstica Jr, M. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2020). Microalgae carotenoids intake: influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Research International, 128, 108770. doi: 10.1016/j.foodres.2019.108770.
  • Nitschke, U., & Stengel, D. B. (2016). Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology, 28(6), 3527-3533. doi: 10.1007/s10811-016-0868-6.
  • Ortiz, J., Uquiche, E., Robert, P., Romero, N., Quitral, V., & Llantén, C. (2009). Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. European Journal of Lipid Science and Technology, 111(4), 320-327. doi: 10.1002/ejlt.200800140.
  • Paz, S., Rubio, C., Frías, I., Gutiérrez, Á. J., González-Weller, D., Martín, V., et al. (2019). Toxic metals (Al, Cd, Pb and Hg) in the most consumed edible seaweeds in Europe. Chemosphere, 218, 879-884. doi: 10.1016/j.chemosphere.2018.11.165.
  • Pistocchi, R., Dao, L. T. H., Mikulic, P., & Beardall, J. (2019). Metal Pollution in Water: Toxicity, Tolerance and Use of Algae as a Potential Remediation Solution. In: Hallmann, A., Rampelotto, P. H. (ed). Grand Challenges in Algae Biotechnology (pp. 471-500). Springer, Cham. doi: 10.1007/978-3-030-25233-5
  • Resmi Gazete. (2017). Türk gıda kodeksi gıda katkı maddeleri yönetmeliğinde değişiklik yapılmasına dair yönetmelik, sayı: 30188. Erişim Tarihi 02.09.2020, Erişim Adresi: https://www.resmigazete.gov.tr/eskiler/2017/09/20170922-4.htm.
  • Škrovánková, S. (2011). Seaweed vitamins as nutraceuticals. In: Kim, S. K. (ed). Advances in food and nutrition research, 64, 357-369. Academic Press. doi: 10.1016/B978-0-12-387669-0.00028-4
  • Sohrabipour J. (2019). Fatty acids components of marine macroalgae and their medicinal applications. Journal of Phycological Research, 3(2). Erişim Tarihi 02.09.2020, Erişim Adresi: http://phycology.sbu.ac.ir/article/view/30770.
  • Spinola, M. V., & Díaz-Santos, E. (2020). Microalgae Nutraceuticals: The Role of Lutein in Human Health. In: Alam, M. A., Xu, J. L., Wang, Z. (ed). Microalgae Biotechnology for Food, Health and High Value Products (pp. 243-263). Springer, Singapore. doi: 10.1007/978-981-15-0169-2_7.
  • Szabo, N. J., Matulka, R. A., & Chan, T. (2013). Safety evaluation of whole algalin protein (wap) from Chlorella protothecoides. Food and Chemical Toxicology, 59, 34-45. doi: 10.1016/j.fct.2013.05.035.
  • Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2016). Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. Journal of Applied Phycology, 28(6), 3575-3585. doi: 10.1007/s10811-016-0863-y.
  • Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology advances, 41, 107536. doi: 10.1016/j.biotechadv.2020.107536.
  • Ugya, A. Y., Imam, T. S., Li, A., Ma, J., & Hua, X. (2020). Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chemistry and Ecology, 36(2), 174-193. doi: 10.1080/02757540.2019.1688308.
  • UN DESA. (2019). World population prospects 2019: highlights. United Nations Department for Economic and Social Affairs. Erişim Tarihi: 02.09.2020, Erişim Adresi: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html
  • USDA. (2020). FoodData Central. Erişim Tarihi 02.09.2020, https://fdc.nal.usda.gov/.
  • Wang, C., Yatsuya, H., Li, Y., Ota, A., Tamakoshi, K., Fujino, Y., et al. (2016). Prospective study of seaweed consumption and thyroid cancer incidence in women: the Japan collaborative cohort study. European Journal of Cancer Prevention, 25(3), 239-245. doi: 10.1097/CEJ.0000000000000168.
  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, et al. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949-982. doi: 10.1007/s10811-016-0974-5.
  • Zhao, X., Li, B., Xue, C., & Sun, L. (2012). Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 24(2), 295-300. doi: 10.1007/s10811-011-9679-y.

Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar)

Yıl 2020, , 221 - 237, 22.12.2020
https://doi.org/10.46413/boneyusbad.795543

Öz

Nüfusun artmasıyla birlikte beslenmeye bağlı problemlerin de artacağı düşünülmekte ve alternatif besin kaynakları aranmaktadır. Algler büyük biyokütleleri ve zengin biyoçeşitlilikleri ile alternatif kaynaklar arasında gösterilmektedir. Türlerine ve çevresel şartlara göre değişmekle birlikte yüksek miktarda makro ve mikro besin ögelerini üretebilmektedir. Özellikle protein ve esansiyel aminoasitler, eikosapentaenoik asit, dokosaheksaenoik asit, antioksidan vitaminler, demir ve iyot yönünden oldukça zengindir. Aynı zamanda antioksidanlar, fenolik bileşikler, polisakkaritler ve lutein gibi birçok biyoaktif madde içermektedir. Bu sayede sağlığın geliştirilmesi ve hastalıkların önlenmesi konusunda bazı toplumlarda alternatif olarak kullanılmaktadır. Bunun yanında ağır metal, toksinler, alerjen etmenler gibi olumsuz etkileri olabilmektedir. Alglerden en yüksek düzeyde faydalanılabilmesi için bu alanda bilimsel araştırmaların arttırılması, risk analizlerinin yapılması, mevzuatların oluşturulması ve küresel politikaların geliştirilmesi gerekmektedir.

Kaynakça

  • Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial cell factories, 11(1), 96. doi: 10.1186/1475-2859-11-96.
  • Ali, A. Y., Idris, A. M., Eltayeb, M. A., El-Zahhar, A. A., & Ashraf, I. M. (2019). Bioaccumulation and health risk assessment of toxic metals in red algae in Sudanese Red Sea coast. Toxin reviews, 1-11. doi: 10.1080/15569543.2019.1697886.
  • Basheer, S., Huo, S., Zhu, F., Qian, J., Xu, L., Cui, F. et al. (2020). Microalgae in human health and medicine. In: Alam, A., Xu, J. L., Wang, Z. (ed). Microalgae Biotechnology for Food, Health and High Value Products (pp. 149-174). Springer, Singapore. doi: 10.1007/978-981-15-0169-2_5.
  • Barahona, T., Encinas, M. V., Mansilla, A., Matsuhiro, B., & Zúñiga, E. A. (2012). A sulfated galactan with antioxidant capacity from the green variant of tetrasporic Gigartina skottsbergii (Gigartinales, Rhodophyta). Carbohydrate Research, 347(1), 114-120. doi: 10.1016/j.carres.2011.11.014.
  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
  • Benjama, O., & Masniyom, P. (2012). Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Sonklanakarin Journal of Science and Technology, 34(2), 223.
  • Boğaziçi Üniversitesi. (2017). İstanbul mikroyosun biyoteknolojileri araştırma ve geliştirme birimi (İMBİYOTAB). Erişim Tarihi 02.09.2020, https://imbiyotab.boun.edu.tr/
  • Borowitzka, M. A. (2013). Dunaliella: biology, production, and markets. In: Richmond A., & Hu, Q., (ed). Handbook of Microalgal Culture: Applied Phycology and Biotechnology, (pp 359-368). John Wiley & Sons. doi: 10.1002/9781118567166.ch18
  • Cabrita, A. R., Maia, M. R., Oliveira, H. M., Sousa-Pinto, I., Almeida, A. A., Pinto, E. et al. (2016). Tracing seaweeds as mineral sources for farm-animals. Journal of applied phycology, 28(5), 3135-3150. doi: 10.1007/s10811-016-0839-y.
  • Chacón‐Lee, T. L., & González‐Mariño, G. E. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive reviews in food science and food safety, 9(6), 655-675. doi: 10.1111/j.1541-4337.2010.00132.x.
  • Cheney, D. (2016). Toxic and harmful seaweeds. In: Fleurence, J., & Levine, I. (Ed) Seaweed in health and disease prevention (pp. 407-421). Academic Press. doi: 10.1016/B978-0-12-802772-1.00013-0.
  • Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez-Augustin, O. (2015). Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Marine drugs, 13(8), 5358-5383. doi: 10.3390/md13085358.
  • Costa, J. A. V., Moreira, J. B., Fanka, L. S., da Costa Kosinski, R., & de Morais, M. G. (2020). Microalgal biotechnology applied in biomedicine. In: Konur, Ö. (ed). Handbook of Algal Science, Technology and Medicine (pp. 429-439). Academic Press. doi: 10.1016/B978-0-12-818305-2.00027-9
  • Dhargalkar, V. (2015). Uses of seaweeds in the Indian diet for sustenance and well-being. Sci Cult, 80, 192-202.
  • Duffy, L. C., Raiten, D. J., Hubbard, V. S., & Starke-Reed, P. (2015). Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. The Journal of nutrition, 145(5), 1123S-1130S. doi: 10.3945/jn.114.194936.
  • FAO. (2018). The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals. Erişim Tarihi 02.09.2020, http://www.fao.org/documents/card/en/c/I9540EN/
  • FAO, IFAD, UNICEF, WFP & WHO. (2017). The state of food security and nutrition in the world. Building resilience for peace and food security. Erişim Tarihi 02.09.2020, http://www.fao.org/3/a-i7695e.pdf
  • FDA. (2019). Generally recognized as safe (GRAS). Erişim Tarihi 02.09.2020, https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras
  • Ferraces-Casais, P., Lage-Yusty, M. A., De Quirós, A. R. B., & López-Hernández, J. (2012). Evaluation of bioactive compounds in fresh edible seaweeds. Food Analytical Methods, 5(4), 828-834. doi: 10.1007/s12161-011-9321-2.
  • Fields, F. J., Lejzerowicz, F., Schroeder, D., Ngoi, S. M., Tran, M., McDonald, D., et al. (2020). Effects of the microalgae Chlamydomonas on gastrointestinal health. Journal of Functional Foods, 65, 103738. doi: 10.1016/j.jff.2019.103738.
  • Francesconi, K. A. (2010). Arsenic species in seafood: origin and human health implications. Pure and Applied Chemistry, 82(2), 373-381. doi: 10.1351/PAC-CON-09-07-01.
  • Gaillande, C., Payri, C., Remoissenet, G., & Zubia, M. (2017). Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. Journal of Applied Phycology, 29(5), 2249-2266.doi: 10.1007/s10811-016-0912-6.
  • García-Casal, M. N., Pereira, A. C., Leets, I., Ramírez, J., & Quiroga, M. F. (2007). High iron content and bioavailability in humans from four species of marine algae. The Journal of Nutrition, 137(12), 2691-2695. doi: 10.1093/jn/137.12.2691.
  • García-Casal, M. N., Ramirez, J., Leets, I., Pereira, A. C., & Quiroga, M. F. (2008). Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. British Journal of Nutrition, 101(1), 79-85. doi: 10.1017/S0007114508994757.
  • Gerberş P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Erişim Tarihi 02.09.2020, http://www.fao.org/3/a-i3437e.pdf
  • Griffin, J. A. (2015). An Investigative Study Into the Beneficial Use of Seaweed in Bread and the Broader Food Industry. Erişim Tarihi 02.09.2020, https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1000&context=tfschcafdis
  • Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of applied phycology, 21(5), 493-507. doi: 10.1007/s10811-008-9392-7.
  • Gómez-Zorita, S., Trepiana, J., González-Arceo, M., Aguirre, L., Milton-Laskibar, I., González, M. et al. (2020). Anti-Obesity Effects of Microalgae. International Journal of Molecular Sciences, 21(1), 41. doi: 10.3390/ijms21010041.
  • Gutiérrez-Pliego, L. E., Martínez-Carrillo, B. E., Reséndiz-Albor, A. A., & Valdés-Ramos, R. (2020). Effect on adipose tissue of diabetic mice supplemented with n-3 fatty acids extracted from microalgae. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 20(5), 728-735. doi: 10.2174/1871530320666200213111452.
  • Helliwell, K. E., Lawrence, A. D., Holzer, A., Kudahl, U. J., Sasso, S., Kräutler, et al. (2016). Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Current Biology, 26(8), 999-1008. doi: 10.1016/j.cub.2016.02.041.
  • Helliwell, K. E., Wheeler, G. L., Leptos, K. C., Goldstein, R. E., & Smith, A. G. (2011). Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Molecular biology and evolution, 28(10), 2921-2933. doi: 10.1093/molbev/msr124.
  • Helliwell, K. E., Wheeler, G. L., & Smith, A. G. (2013). Widespread decay of vitamin-related pathways: coincidence or consequence?. Trends in Genetics, 29(8), 469-478. doi: 10.1016/j.tig.2013.03.003.
  • Hernández-Carmona, G., Carrillo-Domínguez, S., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Murillo-Álvarez, J. I., Muñoz-Ochoa, M., et al. (2009). Monthly variation in the chemical composition of Eisenia arborea JE Areschoug. Journal of applied phycology, 21(5), 607-616. doi: 10.1007/s10811-009-9454-5.
  • Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine drugs, 13(5), 2967-3028. doi: 10.3390/md13052967.
  • Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46, 101800. doi: 10.1016/j.algal.2020.101800.
  • Kinnaert, C., Daugaard, M., Nami, F., & Clausen, M. H. (2017). Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chemical reviews, 117(17), 11337-11405. doi: 10.1021/acs.chemrev.7b00162.
  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal research, 6, 52-63. doi: 10.1016/j.algal.2014.09.002.
  • Le, T. M., Knulst, A. C., & Röckmann, H. (2014). Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food and Chemical Toxicology, 74, 309-310. doi: 10.1016/j.fct.2014.10.024.
  • Ling, A. L. M., Yasir, S., Matanjun, P., & Bakar, M. F. A. (2015). Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. Journal of Applied Phycology, 27(4), 1717-1723. doi: 10.1007/s10811-014-0467-3.
  • Ma, Z., Lin, L., Wu, M., Yu, H., Shang, T., Zhang, T., & Zhao, M. (2018). Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture, 497, 49-55. doi: 10.1016/j.aquaculture.2018.07.040.
  • Maraşlıoğlu, F & Gönülol, A. (2019) Turkish algae electronic publication, Çorum, Turkey. http://turkiyealgleri.hitit.edu.tr/ilgi.php Erişim Tarihi 02.09.2020, http://turkiyealgleri.hitit.edu.tr/.
  • Michikawa, T., Inoue, M., Shimazu, T., Sawada, N., Iwasaki, M., Sasazuki, S, et al. (2012). Seaweed consumption and the risk of thyroid cancer in women: the Japan Public Health Center-based Prospective Study. European Journal of Cancer Prevention, 21(3), 254-260. doi: 10.1097/CEJ.0b013e32834a8042.
  • Miyai, K., Tokushige, T., Kondo, M., & Iodine Research Group. (2008). Suppression of thyroid function during ingestion of seaweed" Kombu"(Laminaria japonoca) in normal Japanese adults. Endocrine journal, 55(6), 1103-1108. doi: 10.1507/endocrj.K08E-125.
  • Mujeeb, M. A., Vedamurthy, A., Shettar, A. K., Puranik, S. I., Ghagane, S., Thimmappa, S. C. (2020). In vitro anti-oxidant and anti-cancer activity of tetradesmus acuminatus microalgae extract on MCF-7 human breast cancer cell line. International Journal of Cancer Research, 16(1), 1-9. doi: 10.3923/ijcr.2020.1.9.
  • Nascimento, T. C., Cazarin, C. B. B., Maróstica Jr, M. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2020). Microalgae carotenoids intake: influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Research International, 128, 108770. doi: 10.1016/j.foodres.2019.108770.
  • Nitschke, U., & Stengel, D. B. (2016). Quantification of iodine loss in edible Irish seaweeds during processing. Journal of Applied Phycology, 28(6), 3527-3533. doi: 10.1007/s10811-016-0868-6.
  • Ortiz, J., Uquiche, E., Robert, P., Romero, N., Quitral, V., & Llantén, C. (2009). Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. European Journal of Lipid Science and Technology, 111(4), 320-327. doi: 10.1002/ejlt.200800140.
  • Paz, S., Rubio, C., Frías, I., Gutiérrez, Á. J., González-Weller, D., Martín, V., et al. (2019). Toxic metals (Al, Cd, Pb and Hg) in the most consumed edible seaweeds in Europe. Chemosphere, 218, 879-884. doi: 10.1016/j.chemosphere.2018.11.165.
  • Pistocchi, R., Dao, L. T. H., Mikulic, P., & Beardall, J. (2019). Metal Pollution in Water: Toxicity, Tolerance and Use of Algae as a Potential Remediation Solution. In: Hallmann, A., Rampelotto, P. H. (ed). Grand Challenges in Algae Biotechnology (pp. 471-500). Springer, Cham. doi: 10.1007/978-3-030-25233-5
  • Resmi Gazete. (2017). Türk gıda kodeksi gıda katkı maddeleri yönetmeliğinde değişiklik yapılmasına dair yönetmelik, sayı: 30188. Erişim Tarihi 02.09.2020, Erişim Adresi: https://www.resmigazete.gov.tr/eskiler/2017/09/20170922-4.htm.
  • Škrovánková, S. (2011). Seaweed vitamins as nutraceuticals. In: Kim, S. K. (ed). Advances in food and nutrition research, 64, 357-369. Academic Press. doi: 10.1016/B978-0-12-387669-0.00028-4
  • Sohrabipour J. (2019). Fatty acids components of marine macroalgae and their medicinal applications. Journal of Phycological Research, 3(2). Erişim Tarihi 02.09.2020, Erişim Adresi: http://phycology.sbu.ac.ir/article/view/30770.
  • Spinola, M. V., & Díaz-Santos, E. (2020). Microalgae Nutraceuticals: The Role of Lutein in Human Health. In: Alam, M. A., Xu, J. L., Wang, Z. (ed). Microalgae Biotechnology for Food, Health and High Value Products (pp. 243-263). Springer, Singapore. doi: 10.1007/978-981-15-0169-2_7.
  • Szabo, N. J., Matulka, R. A., & Chan, T. (2013). Safety evaluation of whole algalin protein (wap) from Chlorella protothecoides. Food and Chemical Toxicology, 59, 34-45. doi: 10.1016/j.fct.2013.05.035.
  • Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2016). Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. Journal of Applied Phycology, 28(6), 3575-3585. doi: 10.1007/s10811-016-0863-y.
  • Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology advances, 41, 107536. doi: 10.1016/j.biotechadv.2020.107536.
  • Ugya, A. Y., Imam, T. S., Li, A., Ma, J., & Hua, X. (2020). Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chemistry and Ecology, 36(2), 174-193. doi: 10.1080/02757540.2019.1688308.
  • UN DESA. (2019). World population prospects 2019: highlights. United Nations Department for Economic and Social Affairs. Erişim Tarihi: 02.09.2020, Erişim Adresi: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html
  • USDA. (2020). FoodData Central. Erişim Tarihi 02.09.2020, https://fdc.nal.usda.gov/.
  • Wang, C., Yatsuya, H., Li, Y., Ota, A., Tamakoshi, K., Fujino, Y., et al. (2016). Prospective study of seaweed consumption and thyroid cancer incidence in women: the Japan collaborative cohort study. European Journal of Cancer Prevention, 25(3), 239-245. doi: 10.1097/CEJ.0000000000000168.
  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, et al. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949-982. doi: 10.1007/s10811-016-0974-5.
  • Zhao, X., Li, B., Xue, C., & Sun, L. (2012). Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 24(2), 295-300. doi: 10.1007/s10811-011-9679-y.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm DERLEME MAKALE
Yazarlar

Mücahit Muslu 0000-0002-8761-5061

Gülden Fatma Gökçay 0000-0003-3726-5726

Yayımlanma Tarihi 22 Aralık 2020
Gönderilme Tarihi 15 Eylül 2020
Kabul Tarihi 8 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Muslu, M., & Gökçay, G. F. (2020). Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, 2(3), 221-237. https://doi.org/10.46413/boneyusbad.795543
AMA Muslu M, Gökçay GF. Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. Aralık 2020;2(3):221-237. doi:10.46413/boneyusbad.795543
Chicago Muslu, Mücahit, ve Gülden Fatma Gökçay. “Sağlığın Desteklenmesi Ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar)”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi 2, sy. 3 (Aralık 2020): 221-37. https://doi.org/10.46413/boneyusbad.795543.
EndNote Muslu M, Gökçay GF (01 Aralık 2020) Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 2 3 221–237.
IEEE M. Muslu ve G. F. Gökçay, “Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar)”, Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi, c. 2, sy. 3, ss. 221–237, 2020, doi: 10.46413/boneyusbad.795543.
ISNAD Muslu, Mücahit - Gökçay, Gülden Fatma. “Sağlığın Desteklenmesi Ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar)”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 2/3 (Aralık 2020), 221-237. https://doi.org/10.46413/boneyusbad.795543.
JAMA Muslu M, Gökçay GF. Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2020;2:221–237.
MLA Muslu, Mücahit ve Gülden Fatma Gökçay. “Sağlığın Desteklenmesi Ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar)”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, c. 2, sy. 3, 2020, ss. 221-37, doi:10.46413/boneyusbad.795543.
Vancouver Muslu M, Gökçay GF. Sağlığın Desteklenmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Alg (Yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2020;2(3):221-37.

23788 Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.