Araştırma Makalesi
BibTex RIS Kaynak Göster

Sultan ve Hürmetçi Sazlıklarından Belirli Gıda Patojenlerine Karşı İzole Edilen Litik Fajların Fenotipik Karakterizasyonu

Yıl 2025, Cilt: 6 Sayı: 1, 26 - 34, 30.06.2025
https://doi.org/10.58833/bozokvetsci.1686329

Öz

Bu çalışmada, Sultan ve Hürmetçi sazlıklarından spesifik gıda patojenlerine karşı litik bakteriyofajların izole edilmesi, fenotipik ve biyolojik özelliklerinin belirlenmesi ve etkinliklerinin değerlendirilmesi amaçlandı. Bu kapsamda, toplanan su örnekleri, Escherichia coli, Staphylococcus aureus, Salmonella Typhimurium, Listeria monocytogenes ve Pseudomonas aeruginosa bakterilerine özgü litik fajların izolasyonu amacıyla zenginleştirildi; faj varlığı spot test yöntemiyle ön değerlendirildi ve pozitif sonuçlar çift tabaka agar yöntemiyle saflaştırıldı. İzole edilen litik fajların optimal MOI değerleri, adsorpsiyon kinetikleri, tek aşamalı büyüme eğrileri, konak spektrumları ve çevresel stabiliteleri çift tabaka agar yöntemi ve spot test kullanılarak karakterize edildi. Çalışmada, L. monocytogenes hariç diğer test bakterilerine karşı çapları 1-3 mm arasında değişen toplam 40 litik faj izole edildi. Elde edilen fajların titreleri 10⁹-10²⁰ pfu/mL arasında bulundu, tüm faj izolatları 0.1–100 MOI seviyelerinde bakteriyel büyümeyi inhibe etti ve 1 MOI düzeyinde en yüksek çoğalma gözlendi. Fajların adsorpsiyon süreleri, latent periyotları ve lizis süreleri sırasıyla 15-20 dk, 15-25 dk ve 20-30 dk arasında değişirken, patlama boyutlarının 100–120 pfu/cfu arasında olduğu belirlendi. İzole edilen fajlar pH 3.0-9.0 aralığında ve 50°C’ye kadar stabilite gösterdi. Ayrıca, izole edilen fajların 4°C'de altı ay boyunca aktivitelerini koruduğu ve yalnızca hedef bakterilere karşı litik etkinlik göstererek yüksek konak özgüllüğü sergilediği belirlendi. Sonuç olarak, çalışmada sazlıklardan izole edilen fajlar, geniş litik spektrumları, yüksek özgüllükleri ve çevresel koşullara karşı gösterdikleri stabilite özellikleri ile biyokontrol ve terapötik uygulamalarda kullanılabilecek ajan adayları olabilecekleri gösterilmiştir.

Kaynakça

  • 1. Chavan R, Purandare K. Bacteriophage therapy inspired new age technologies to control antimicrobial resistance. Journal of Umm Al-Qura University for Applied Sciences 2025; 1-22.
  • 2. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
  • 3. Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman medical journal 2019; 34(3):184.
  • 4. Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns S.J. Mechanisms and clinical importance of bacteriophage resistance. FEMS microbiology reviews 2022; 46(1):fuab048.
  • 5. Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N et al. Tracking the phage trends: a comprehensive review of applications in therapy and food production. Frontiers in Microbiology 2022; 13: 993990.
  • 6. Alomari MMM, Dec M, Urban-Chmiel R. Bacteriophages as an alternative method for control of zoonotic and foodborne pathogens. Viruses 2021; 13(12): 2348.
  • 7. Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The use of bacteriophages in biotechnology and recent insights into proteomics. Antibiotics 2022; 11(5): 653.
  • 8. Ling H, Lou X, Luo Q, He Z, Sun M et al. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharmaceutica Sinica B 2022; 12(12): 4348-4364.
  • 9. Jia HJ, Jia PP, Yin S, Bu LK, Yang G et al. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Frontiers in microbiology 2023; 14: 1172635.
  • 10. Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J et al. Current clinical landscape and global potential of bacteriophage therapy. Viruses 2023; 15(4): 1020.
  • 11. Ge H, Fu S, Guo H, Hu M, Xu Z et al. Application and challenge of bacteriophage in the food protection. International Journal of Food Microbiology 2022; 380: 109872.
  • 12. Abebe E, Gugsa G, Ahmed M. Review on major food‐borne zoonotic bacterial pathogens. Journal of tropical medicine 2020; (1): 4674235.
  • 13. Oraç A. Tarihçe Ve Gıda Mikrobiyolojisinin Gelişimi. Gıda Mikrobiyolojisi 2024: 1.
  • 14. Nair A, Ghugare GS, Khairnar K. An appraisal of bacteriophage isolation techniques from environment. Microbial ecology 2022; 1-17.
  • 15. Suttle CA. Marine viruses—major players in the global ecosystem. Nature reviews microbiology 2007; 5(10): 801-812.
  • 16. Puxty RJ, Millard AD. Functional ecology of bacteriophages in the environment. Current Opinion in Microbiology 2023; 71: 102245.
  • 17. Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Current Opinion in Microbiology 2022; 70: 102229.
  • 18. Şimşek T, Aykar S. Kayseri Hürmetçi Sazlığı’nın Mevcut Durumu Ve Turizme Konu Olma Yeterliliği. Enderun 2022; 6(2): 181-201.
  • 19. Sönmez ME, Somuncu M. Sultansazlığı’nın alansal değişiminin sürdürülebilirlik açısından değerlendirilmesi. Türk Coğrafya Dergisi 2016; (66): 1-10.
  • 20. Gungor C, Onmaz NE, Gundog DA, Yavas GT, Koskeroglu K et al. Four novel bacteriophages from slaughterhouse: Their potency on control of biofilm-forming MDR S. aureus in beef model. Food Control 2024; 156: 110146.
  • 21. Çufaoğlu G, Derinöz AN, Ayaz ND. An investigation on biocontrol of Escherichia coli O157: H7 by a bacteriophage cocktail in pastirma. Ankara Üniv Vet Fak Derg 2019; 66: 7-11.
  • 22. Stipniece L, Rezevska D, Kroica J, Racenis K. Effect of the Biopolymer Carrier on Staphylococcus aureus Bacteriophage Lytic Activity. Biomolecules 2022; 12(12): 1875.
  • 23. Khalatbari-Limaki S, Hosseinzadeh S, Shekarforoush SS, Berizi E. The morphological and biological characteristics of a virulent PI phage isolated from slaughterhouse sewage in Shiraz, Iran. Iranian Journal of Microbiology 2020; 12(6): 616.
  • 24. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, et al. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages from Seafood Samples. Frontiers in Microbiology 2021; 12: 616548.
  • 25. Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S et al. Isolation and characterization of bacteriophage ZCSE6 against Salmonella spp.: phage application in milk. Biologics 2021; 1(2):164-176.
  • 26. Chen Y, Li X, Song J, Yang D, Liu W et al. Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae (Hermetia illucens L.[Diptera: Stratiomyidae]). Archives of Virology 2019; 164: 2277-2284.
  • 27. Wang J, Zhao F, Sun H, Wang Q, Zhang C et al. Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS microbiology 2019; 5(3): 285.
  • 28. Yildirim Z, Sakіn T, Çoban F. Isolation of lytic bacteriophages infecting Salmonella Typhimurium and Salmonella Enteritidis. Acta Biologica Hungarica 2018; 69(3): 350-369.
  • 29. Litt PK, Jaroni D. Isolation and Physiomorphological Characterization of Escherichia coli O157: H7‐Infecting Bacteriophages Recovered from Beef Cattle Operations. International journal of microbiology 2017; 2017(1); 7013236.
  • 30. Huang C, Shi J, Ma W, Li Z, Wang J et al. Farklı gıda matrislerinde yeni bir spesifik Salmonella bakteriyofajının izolasyonu, karakterizasyonu ve uygulaması. Uluslararası gıda araştırması 2018; 111: 631-641.
  • 31. Sada TS, Tessema TS. Isolation and characterization of lytic bacteriophages from various sources in Addis Ababa against antimicrobial-resistant diarrheagenic Escherichia coli strains and evaluation of their therapeutic potential. BMC Infectious Diseases 2024; 24(1): 310.
  • 32. Jiang YH, Liu JQ, Zhao CY, Yu S, Sun Y et al. Isolation and genome sequencing of a novel Pseudomonas aeruginosa phage PA-YS35. Current Microbiology 2020; 77: 123-128.
  • 33. Akremi I, Merabishvili M, Jlidi M, Haj Brahim A, Ben Ali M et al. Isolation and characterization of lytic Pseudomonas aeruginosa bacteriophages isolated from sewage samples from Tunisia. Viruses 2022; 14(11): 2339.
  • 34. Alonso MDC, Rodríguez J, Borrego JJ. Characterization of marine bacteriophages isolated from the Alboran Sea (Western Mediterranean). Journal of plankton research 2022; 24(10): 1079-1087.
  • 35. Cufaoglu G, Ayaz ND. Listeria monocytogenes risk associated with chicken at slaughter and biocontrol with three new bacteriophages. Journal of Food Safety 2019; 39(3): e12621.
  • 36. Kim JW, Siletzky RM, Kathariou S. Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States. Applied and Environmental Microbiology 2008; 74(21): 6623-6630.
  • 37. Brown P, Chen Y, Parsons C, Brown E, Loessner MJ et al. Whole genome sequence analysis of phage-resistant Listeria monocytogenes serotype 1/2a strains from turkey processing plants. Pathogens 2021; 10(2): 199.
  • 38. Byun KH, Han SH, Choi MW, Park SH, Ha SD. Isolation, characterization, and application of bacteriophages to reduce and inhibit Listeria monocytogenes in celery and enoki mushroom. Food Control 2022; 135: 108826.
  • 39. Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 2019; 12(1): 35.
  • 40. de Jonge PA, Nobrega FL, Brouns SJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends in microbiology 2019; 27(1): 51-63.
  • 41. Bolger-Munro M, Cheung K, Fang A, Wang L. T4 bacteriophage average burst size varies with Escherichia coli B23 cell culture age. J Exp Microbiol Immunol 2013; 17: 115-119.
  • 42. Nabergoj D, Modic P, Podgornik A. Effect of bacterial growth rate on bacteriophage population growth rate. MicrobiologyOpen 2018; 7(2): e00558.
  • 43. Pradeep AN, Ramasamy S, Veniemilda JK, Kumar CV. Effect of ph & temperature variations on phage stability-a crucial prerequisite for successful phage therapy. Int. J. Pharm. Sci. Res 2022; 13: 5178-5182.
  • 44. Nilsson AS. Phage therapy—constraints and possibilities. Upsala journal of medical sciences 2014; 119(2): 192-198.
  • 45. Benala M, Vaiyapuri M, Visnuvinayagam S, George JC, Raveendran K et al. A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods 2021; 294: 114177.
  • 46. Fernández L, Gutiérrez D, García P, Rodríguez A. The perfect bacteriophage for therapeutic applications—a quick guide. Antibiotics 2019; 8(3): 126.
  • 47. Mohammed-Ali MN, Jamalludeen NM. Isolation and characterization of bacteriophage against methicillin resistant Staphylococcus aureus. J Med Microb Diagn 2015; 5(213): 2161-0703.
  • 48. Fukuda T, Tsukano K, Nakatsuji H, Suzuki K. Plasma diamine oxidase activity decline with diarrhea severity in calves indicating systemic dysfunction related to intestinal mucosal damage. Research in Veterinary Science 2019; 126: 127–130. doi: 10.1016/j.rvsc.2019.08.004.
  • 49. Quanz S. Dietary interventions to modulate gut function in ruminants. Doctoral dissertation, 2022.
  • 50. He L, Wang C, Simujide H, Aricha H, Zhang J et al. Effect of early pathogenic Escherichia coli infection on the intestinal barrier and immune function in newborn calves. Frontiers in Cellular and Infection Microbiology 2022; 12: 818276. doi: 10.3389/fcimb.2022.818276.
  • 51. Alıç Ural D. Intestinal mucosal damage and intestinal permeability in non-infectious and infectious diarrheic calves in relation to diamine oxidase activity. International Journal of Veterinary and Animal Research 2024; 7(3): 83–86.
  • 52. Alıç Ural D, Erdoḡan S, Kılıç N, Erdoḡan H, Turk E et al. Probiotic enema protects intestinal mucosae and decreases plasma diamine oxidase activity among calves with diarrhea. Veterinaria 2023; 72(3): 283–289.
  • 53. Maintz L, Novak N. Histamine and histamine intolerance. American Journal of Clinical Nutrition 2007; 85(5): 1185–1196. doi: 10.1093/ajcn/85.5.1185.

Phenotypic Characterization of Lytic Phages Targeting Specific Food Pathogens Isolated from Sultan and Hürmetçi Marshes

Yıl 2025, Cilt: 6 Sayı: 1, 26 - 34, 30.06.2025
https://doi.org/10.58833/bozokvetsci.1686329

Öz

In this study, the isolation of lytic bacteriophages against specific food pathogens from the Sultan and Hürmetçi marshes, the characterization of their phenotypic and biological properties, and the evaluation of their activity were aimed. For this purpose, water samples collected from the marshes were enriched for the isolation of lytic phages specific to Escherichia coli, Staphylococcus aureus, Salmonella Typhimurium, Listeria monocytogenes, and Pseudomonas aeruginosa. The presence of phages was initially assessed by the spot test method, and positive results were subsequently purified using the double-layer agar method. The isolated lytic phages were characterized for their optimal multiplicity of infection (MOI), adsorption kinetics, one-step growth curves, host range, and environmental stability using spot tests and the double-layer agar method. In the study, a total of 40 lytic phages with plaque diameters ranging from 1 to 3 mm were isolated against the test bacteria, excluding L. monocytogenes. The phage titers ranged between 10⁹ and 10²⁰ pfu/mL, and all phage isolates inhibited bacterial growth at MOI levels between 0.1 and 100, with the highest proliferation observed at an MOI of 1. The adsorption times, latent periods, and lysis times of the phages were determined to range between 15-20 min, 15-25 min, and 20–30 min, respectively, while the burst sizes ranged between 100 and 120 pfu/cfu. The isolated phages demonstrated stability across a pH range of 3.0 to 9.0 and up to a temperature of 50°C. Additionally, the phages retained their activity after six months of storage at 4°C and exhibited high host specificity by displaying lytic activity only against their target bacteria. In conclusion, it was shown that phages isolated from reeds in the study could be candidate agents that can be used in biocontrol and therapeutic applications with their broad lytic spectrum, high specificity and stability against environmental conditions.

Kaynakça

  • 1. Chavan R, Purandare K. Bacteriophage therapy inspired new age technologies to control antimicrobial resistance. Journal of Umm Al-Qura University for Applied Sciences 2025; 1-22.
  • 2. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
  • 3. Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman medical journal 2019; 34(3):184.
  • 4. Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns S.J. Mechanisms and clinical importance of bacteriophage resistance. FEMS microbiology reviews 2022; 46(1):fuab048.
  • 5. Jaglan AB, Anand T, Verma R, Vashisth M, Virmani N et al. Tracking the phage trends: a comprehensive review of applications in therapy and food production. Frontiers in Microbiology 2022; 13: 993990.
  • 6. Alomari MMM, Dec M, Urban-Chmiel R. Bacteriophages as an alternative method for control of zoonotic and foodborne pathogens. Viruses 2021; 13(12): 2348.
  • 7. Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The use of bacteriophages in biotechnology and recent insights into proteomics. Antibiotics 2022; 11(5): 653.
  • 8. Ling H, Lou X, Luo Q, He Z, Sun M et al. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharmaceutica Sinica B 2022; 12(12): 4348-4364.
  • 9. Jia HJ, Jia PP, Yin S, Bu LK, Yang G et al. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Frontiers in microbiology 2023; 14: 1172635.
  • 10. Hitchcock NM, Devequi Gomes Nunes D, Shiach J, Valeria Saraiva Hodel K, Dantas Viana Barbosa J et al. Current clinical landscape and global potential of bacteriophage therapy. Viruses 2023; 15(4): 1020.
  • 11. Ge H, Fu S, Guo H, Hu M, Xu Z et al. Application and challenge of bacteriophage in the food protection. International Journal of Food Microbiology 2022; 380: 109872.
  • 12. Abebe E, Gugsa G, Ahmed M. Review on major food‐borne zoonotic bacterial pathogens. Journal of tropical medicine 2020; (1): 4674235.
  • 13. Oraç A. Tarihçe Ve Gıda Mikrobiyolojisinin Gelişimi. Gıda Mikrobiyolojisi 2024: 1.
  • 14. Nair A, Ghugare GS, Khairnar K. An appraisal of bacteriophage isolation techniques from environment. Microbial ecology 2022; 1-17.
  • 15. Suttle CA. Marine viruses—major players in the global ecosystem. Nature reviews microbiology 2007; 5(10): 801-812.
  • 16. Puxty RJ, Millard AD. Functional ecology of bacteriophages in the environment. Current Opinion in Microbiology 2023; 71: 102245.
  • 17. Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Current Opinion in Microbiology 2022; 70: 102229.
  • 18. Şimşek T, Aykar S. Kayseri Hürmetçi Sazlığı’nın Mevcut Durumu Ve Turizme Konu Olma Yeterliliği. Enderun 2022; 6(2): 181-201.
  • 19. Sönmez ME, Somuncu M. Sultansazlığı’nın alansal değişiminin sürdürülebilirlik açısından değerlendirilmesi. Türk Coğrafya Dergisi 2016; (66): 1-10.
  • 20. Gungor C, Onmaz NE, Gundog DA, Yavas GT, Koskeroglu K et al. Four novel bacteriophages from slaughterhouse: Their potency on control of biofilm-forming MDR S. aureus in beef model. Food Control 2024; 156: 110146.
  • 21. Çufaoğlu G, Derinöz AN, Ayaz ND. An investigation on biocontrol of Escherichia coli O157: H7 by a bacteriophage cocktail in pastirma. Ankara Üniv Vet Fak Derg 2019; 66: 7-11.
  • 22. Stipniece L, Rezevska D, Kroica J, Racenis K. Effect of the Biopolymer Carrier on Staphylococcus aureus Bacteriophage Lytic Activity. Biomolecules 2022; 12(12): 1875.
  • 23. Khalatbari-Limaki S, Hosseinzadeh S, Shekarforoush SS, Berizi E. The morphological and biological characteristics of a virulent PI phage isolated from slaughterhouse sewage in Shiraz, Iran. Iranian Journal of Microbiology 2020; 12(6): 616.
  • 24. Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, et al. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages from Seafood Samples. Frontiers in Microbiology 2021; 12: 616548.
  • 25. Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S et al. Isolation and characterization of bacteriophage ZCSE6 against Salmonella spp.: phage application in milk. Biologics 2021; 1(2):164-176.
  • 26. Chen Y, Li X, Song J, Yang D, Liu W et al. Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae (Hermetia illucens L.[Diptera: Stratiomyidae]). Archives of Virology 2019; 164: 2277-2284.
  • 27. Wang J, Zhao F, Sun H, Wang Q, Zhang C et al. Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS microbiology 2019; 5(3): 285.
  • 28. Yildirim Z, Sakіn T, Çoban F. Isolation of lytic bacteriophages infecting Salmonella Typhimurium and Salmonella Enteritidis. Acta Biologica Hungarica 2018; 69(3): 350-369.
  • 29. Litt PK, Jaroni D. Isolation and Physiomorphological Characterization of Escherichia coli O157: H7‐Infecting Bacteriophages Recovered from Beef Cattle Operations. International journal of microbiology 2017; 2017(1); 7013236.
  • 30. Huang C, Shi J, Ma W, Li Z, Wang J et al. Farklı gıda matrislerinde yeni bir spesifik Salmonella bakteriyofajının izolasyonu, karakterizasyonu ve uygulaması. Uluslararası gıda araştırması 2018; 111: 631-641.
  • 31. Sada TS, Tessema TS. Isolation and characterization of lytic bacteriophages from various sources in Addis Ababa against antimicrobial-resistant diarrheagenic Escherichia coli strains and evaluation of their therapeutic potential. BMC Infectious Diseases 2024; 24(1): 310.
  • 32. Jiang YH, Liu JQ, Zhao CY, Yu S, Sun Y et al. Isolation and genome sequencing of a novel Pseudomonas aeruginosa phage PA-YS35. Current Microbiology 2020; 77: 123-128.
  • 33. Akremi I, Merabishvili M, Jlidi M, Haj Brahim A, Ben Ali M et al. Isolation and characterization of lytic Pseudomonas aeruginosa bacteriophages isolated from sewage samples from Tunisia. Viruses 2022; 14(11): 2339.
  • 34. Alonso MDC, Rodríguez J, Borrego JJ. Characterization of marine bacteriophages isolated from the Alboran Sea (Western Mediterranean). Journal of plankton research 2022; 24(10): 1079-1087.
  • 35. Cufaoglu G, Ayaz ND. Listeria monocytogenes risk associated with chicken at slaughter and biocontrol with three new bacteriophages. Journal of Food Safety 2019; 39(3): e12621.
  • 36. Kim JW, Siletzky RM, Kathariou S. Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States. Applied and Environmental Microbiology 2008; 74(21): 6623-6630.
  • 37. Brown P, Chen Y, Parsons C, Brown E, Loessner MJ et al. Whole genome sequence analysis of phage-resistant Listeria monocytogenes serotype 1/2a strains from turkey processing plants. Pathogens 2021; 10(2): 199.
  • 38. Byun KH, Han SH, Choi MW, Park SH, Ha SD. Isolation, characterization, and application of bacteriophages to reduce and inhibit Listeria monocytogenes in celery and enoki mushroom. Food Control 2022; 135: 108826.
  • 39. Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 2019; 12(1): 35.
  • 40. de Jonge PA, Nobrega FL, Brouns SJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends in microbiology 2019; 27(1): 51-63.
  • 41. Bolger-Munro M, Cheung K, Fang A, Wang L. T4 bacteriophage average burst size varies with Escherichia coli B23 cell culture age. J Exp Microbiol Immunol 2013; 17: 115-119.
  • 42. Nabergoj D, Modic P, Podgornik A. Effect of bacterial growth rate on bacteriophage population growth rate. MicrobiologyOpen 2018; 7(2): e00558.
  • 43. Pradeep AN, Ramasamy S, Veniemilda JK, Kumar CV. Effect of ph & temperature variations on phage stability-a crucial prerequisite for successful phage therapy. Int. J. Pharm. Sci. Res 2022; 13: 5178-5182.
  • 44. Nilsson AS. Phage therapy—constraints and possibilities. Upsala journal of medical sciences 2014; 119(2): 192-198.
  • 45. Benala M, Vaiyapuri M, Visnuvinayagam S, George JC, Raveendran K et al. A revisited two-step microtiter plate assay: Optimization of in vitro multiplicity of infection (MOI) for Coliphage and Vibriophage. Journal of Virological Methods 2021; 294: 114177.
  • 46. Fernández L, Gutiérrez D, García P, Rodríguez A. The perfect bacteriophage for therapeutic applications—a quick guide. Antibiotics 2019; 8(3): 126.
  • 47. Mohammed-Ali MN, Jamalludeen NM. Isolation and characterization of bacteriophage against methicillin resistant Staphylococcus aureus. J Med Microb Diagn 2015; 5(213): 2161-0703.
  • 48. Fukuda T, Tsukano K, Nakatsuji H, Suzuki K. Plasma diamine oxidase activity decline with diarrhea severity in calves indicating systemic dysfunction related to intestinal mucosal damage. Research in Veterinary Science 2019; 126: 127–130. doi: 10.1016/j.rvsc.2019.08.004.
  • 49. Quanz S. Dietary interventions to modulate gut function in ruminants. Doctoral dissertation, 2022.
  • 50. He L, Wang C, Simujide H, Aricha H, Zhang J et al. Effect of early pathogenic Escherichia coli infection on the intestinal barrier and immune function in newborn calves. Frontiers in Cellular and Infection Microbiology 2022; 12: 818276. doi: 10.3389/fcimb.2022.818276.
  • 51. Alıç Ural D. Intestinal mucosal damage and intestinal permeability in non-infectious and infectious diarrheic calves in relation to diamine oxidase activity. International Journal of Veterinary and Animal Research 2024; 7(3): 83–86.
  • 52. Alıç Ural D, Erdoḡan S, Kılıç N, Erdoḡan H, Turk E et al. Probiotic enema protects intestinal mucosae and decreases plasma diamine oxidase activity among calves with diarrhea. Veterinaria 2023; 72(3): 283–289.
  • 53. Maintz L, Novak N. Histamine and histamine intolerance. American Journal of Clinical Nutrition 2007; 85(5): 1185–1196. doi: 10.1093/ajcn/85.5.1185.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Nurhan Ertaş Onmaz 0000-0002-4679-6548

Yasin Özkaya 0000-0002-4746-5492

Rumeysa Nur Karakuş 0009-0000-8966-6105

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 29 Nisan 2025
Kabul Tarihi 30 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

Vancouver Ertaş Onmaz N, Özkaya Y, Karakuş RN. Sultan ve Hürmetçi Sazlıklarından Belirli Gıda Patojenlerine Karşı İzole Edilen Litik Fajların Fenotipik Karakterizasyonu. Bozok Vet Sci. 2025;6(1):26-34.