Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Twin Boundary Spacing on Deformation Behavior of Ni Nanowire: A Molecular Dynamics Study

Yıl 2022, , 855 - 865, 31.12.2022
https://doi.org/10.35193/bseufbd.1095036

Öz

Uniaxial tensile stress applied to metallic nanowires with periodically coherent twinned grain structures has significant effects on their mechanical behavior and deformation mechanisms. In this study, the deformation behavior of Ni nanowires with single crystal and different numbers of coherent twin grain structures was investigated using the Molecular Dynamics (MD) simulation method. It was determined that the twin boundary space caused changes in the modulus of elasticity and yield strength; however, the nanowires underwent plastic deformation with dislocation motion and deformation twinning. The Embedded Atom Method (EAM), which includes many-body interactions, was used to determine the interactions between atoms.

Kaynakça

  • Wu, B., Heidelberg, A., & Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529.
  • Hasmy, A.,& Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88, 096103.
  • da Silva, E. Z., da Silva, A. J. R., & Fazzio, A. (2001). How Do Gold Nanowires Break?.Physical Review Letters, 87, 256102.
  • Xia, S., Liu, L., Kong, Y., Wang, M. (2016). Uniaxial strain effects on the optoelectronic properties of GaN nanowires, Superlattices and Microstructures, 97, 327–334.
  • Sainath, G., Choudhary, B. (2015). Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters A, 379(34), 1902–1905.
  • Zhan, H., Gu, Y., Yan, C., & Yarlagadda, P. K. (2014). Bending properties of Ag nanowires with pre-existing surface defects. Computational Materials Science, 81, 45–51.
  • Pak, O. S., Gao, W., Wang, J., Lauga E. (2011). High-speed propulsion of flexible nano wire motors: theory and experiments, Soft Matter., 7, 8169–8181.
  • Weinberger, C. R., Cai, W. (2012). Plasticity of metal nano wires.J. Mater. Chem. 22, 3277–3292.
  • Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., Carney, T. J., Hu, L., Fan, S., & Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 8 (6), 421-425.
  • Jang, J., Hyun, B. G., Ji, S., Cho, E., An, B. W., Cheong, W. H., & Park, J. U. (2017). Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 9 (9), e432.
  • Ji, S., Jang, J., Cho, E., Kim, S. H., Kang, E. S., Kim, J., Kim, H. K., Konh, H., Kim, S. K., Kim, J. Y., Park, J. U. (2017). High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials, 29, 1700538.
  • Liu, H., Zhou, J. (2016). Plasticity in nanotwinned polycrystalline Ni nanowires under uniaxial compression. Materials Letters, 163, 179–182.
  • Wang, L., Zhang, Z., Han, X. (2013). In situ experimental mechanics of nanomaterials at the atomic scale.NPG Asia Materials, 5, e40.
  • Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422–426.
  • Lu, L., Chen, X., Huang, X., Lu, K. (2009). Revealing the maximum strength in nanotwinned copper. Science, 323, 607–610.
  • Hammami, F., & Kulkarni, Y. (2014). Size effects in twinned nanopillars. Journal of Applied Physics, 116, 033512.
  • Li, X., Wei, Y., Lu, L., Lu, K., &Gao, H. (2010). Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 464, 877-880.
  • Wei, Y. (2011). Scaling of maximum strength with grain size in nanotwinned fcc metals. Physical Review B, 83, 132104.
  • Afanasyev, K. A., & Sansoz, F. (2007). Strengthening in Gold Nanopillars with Nanoscale Twins.Nano Letters, 7, 2056-2062.
  • Cao, A. J., Wei, Y. G., & Mao, S. X. (2007). Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Applied Physics Letters, 90, 151909.
  • Deng C., & Sansoz, F. (2009). Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Applied Physics Letters, 95, 091914.
  • Deng, C., & Sansoz, F. (2009). Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni. Acta Materialia, 57, 6090-6101.
  • Jang, D., Li, X., Gao, H., & Greer, J. R. (2012). Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnology, 7, 594-601.
  • Sofiah, A. G. N., Samykano, M., Kadirgama, K., Mohan, R. V., Lah, N. A. C. (2018). Metallic nanowires: Mechanical properties-Theory and experiment. Applied Materials Today, 11, 320–337.
  • Spearot, D. E., Tschopp, M. A., Jacob, K. I., McDowell, D. L. (2007). Tensile strength of <100> and <110> tilt bicrystal copper interfaces. Acta Materialia, 55(2), 705-714.
  • Spearot, D. E., Capolungo, L., Qu, J., Cherkaoui, M. (2008). On the elastic tensile deformation of <100>bicrystal interfaces in copper. Computational. Material Science, 42(1), 57-67.
  • Rapaport, D. (2004). The art of molecular dynamics simulation, 2nd ed. Cambridge University press., 199-244.
  • Leach, A. R., Schomburg, D. (2001). Molecular Modelling: Principles and Applications, 2nd.ed. Longman, London, 353-406.
  • Finbow, G. M., Lynden-Bell, R. M., Mcdonald, I. R. (1997). Atomistic simulation of the stretching of nanoscale metal wires. Molecular Physics, 92, 705–714.
  • Branicio, P. S., Rino, J. P. (2000). Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study. Physical Review B, 62, 16950–16955.
  • Nakamura, A., Brandbyge, M., Hansen, L. B., Jacobsen, K. W. (1999). Density functional simulation of a breaking nanowire.Physical Review Letters, 82, 1538–1541.
  • Walsh, P., Li, W., Kalia, R. K., Nakano, A., Vashishta, P., Saini, S. (2001). Structural Transformation, Amorphization, and Fracture in Nanowires: A Multi-million Atom Molecular Dynamics Study. Applied Physics Letters, 78, 3328–3330.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Ozgen, S., Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica Bi 334, 375-381.
  • Jacobus, K., Sehitoglu, H., Balzer, M. (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Malins, A., Williams, S. R., Eggers, J., Royall, C. P. (2013). Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • Stukowski, A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Foiles, S. M., Baskes, M. I., & Daw, M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33, 7983.
  • Gao, Y., Sun, Y., Yang, Y., Sun, Q., Zhao, J. (2015). Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires. Molecular Simulations, 41, 1546.
  • Hou, Z., Xiao, Q., Wang, Z., Wang, J., Liu, R., Wang, C. (2020). Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B, 581, 411952.
  • Stukowski, A. (2010). Atomic- Scale Modeling of Nanostructured Metals and Alloys. Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Technische Universität, Darmstadt.
  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool.Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • Bañuelos, E. U., Aburto, C. C., Arce, A. M. (2016). A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504.
  • Fanga, R., Wanga, W., Guoa, L., Zhanga, K., Zhanga, X., Lib, H. (2020). Atomic insight into the solidification of Cu melt confined in graphene Nanoslits.Journal of Crystal Growth, 532, 125382.
  • Wen, Y. H., Zhang, Y., Wang, Q., Zheng J. C., Zhu, Z. Z. (2010). Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science, 48, 513-519.
  • Wu, H. A. (2006). Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Hyde, B., Espinosa, H. D., Farkas, D. (2005). An atomistic investigation of elastic and plastic properties of Au nanowires. The Journal of The Minerals, Metals & Materials Society, 57, 62-66.
  • Yin, Q., Wang, Z., Mishra, R., & Xia, Z. (2017). Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum. Aip Advances, 7, 015040.
  • Deng, C., Sansoz, F. (2009). Near-Ideal Strength in Gold Nanowires Achieved through Microstructural Design. ACS Nano, 3, 3001.
  • Guo, X., Xia, Y. Z. (2011). Repulsive force vs. source number: Competing mechanisms in the yield of twinned gold nanowires of finite length. Acta Materialia, 59, 2350.
  • Paul, S. K. (2018). Effect of twist boundary angle on deformation behavior of 〈100〉FCC copper nanowires. Computational Materials Science, 150, 24–32.
  • Kardani, A., & Montazeri, A. (2020). Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Scientific Reports, 10, 9745.
  • Bejaud, R., Durinck, J., & Brochard, S. (2018). Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Materialia, 144, 314–324.
  • Puksic, N., Jenko, M., Godec, M., & Mcguiness, P. J. A. (2017). comparison of the uniaxial deformation of copper and nickel (1119). surfaces: A molecular dynamics study. Scientific Reports, 7, 42234.
  • Christian, J. W., Mahajan, S. (1995). Deformation twinning. Prog.Mater Sci., 39, 1– 157.
  • Beyerlein, I. J., Zhang, X., Misra, A. (2014). Growth twins and deformation twins in metals. Annu. Rev. Mater. Res., 44, 329–363.
  • Zhao, X., Lu, C., Tieu, A. K., Zhan, L., Huang, M., Su, L., Pei, L., Zhang, L. (2018). Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations. Computational Materials Science, 142, 59–71.
  • Jang, D., Li, X., Gao, H., Greer, J. (2012). Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnolgy, 7, 594.
  • Ezaz, T., Sangid, M. D., Sehitoglu, H. (2011). Energy barriers associated with slip twin interactions. Phil. Mag.,91, 1464-1488.
  • Farkas, D., & Patrick, L. (2009). Tensile deformation of fcc Ni as described by an EAM potential. Philos. Mag., 89(34),3435–3450.
  • Bitzek, E., Derlet, P. M., Anderson, P. M., & Swygenhoven, H. V. (2008). The stress-strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Materialia, 56(17), 4846–4857.
  • Froseth, A. G., Derlet, P. M., & Swygenhoven, H. V. (2006). Vicinal twin boundaries providing dislocation sources in nanocrystalline.Al. Scr. Mater., 54(3), 477–481.
  • Park, H. S., Gall, K., Zimmerman, J. A. (2006). Deformation of fcc nanowires by twinning and slip. Journal of the Mechanics and Physics of Solids, 54, 1862–1881.

Ni Nano Telinin Deformasyon Davranışına İkiz Sınır Aralığının Etkisi: Moleküler Dinamik Çalışması

Yıl 2022, , 855 - 865, 31.12.2022
https://doi.org/10.35193/bseufbd.1095036

Öz

Periyodik olarak uyumlu ikizlenmiş tane yapılarına sahip metalik nano tellere uygulanan tek eksenli çekme zorlanması, onların mekanik davranışları ve deformasyon mekanizmaları üzerinde önemli etkiler oluşturmaktadır. Bu çalışmada tek kristal ve farklı sayıda birbiriyle uyumlu ikiz tane yapılarına sahip Nikel (Ni) nano tellerinin deformasyon davranışı Moleküler Dinamik (MD) benzetim yöntemi kullanılarak incelenmeye çalışıldı. İkiz sınır aralığının elastiklik modülü ve akma zorunda değişimler meydana getirdiği, bununla birlikte nano tellerin dislokasyon hareketi ve deformasyon ikizlenmesi ile plastik şekil değişimine uğradıkları belirlendi. Atomlar arası etkileşmelerin belirlenmesinde çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) kullanıldı.

Kaynakça

  • Wu, B., Heidelberg, A., & Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529.
  • Hasmy, A.,& Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88, 096103.
  • da Silva, E. Z., da Silva, A. J. R., & Fazzio, A. (2001). How Do Gold Nanowires Break?.Physical Review Letters, 87, 256102.
  • Xia, S., Liu, L., Kong, Y., Wang, M. (2016). Uniaxial strain effects on the optoelectronic properties of GaN nanowires, Superlattices and Microstructures, 97, 327–334.
  • Sainath, G., Choudhary, B. (2015). Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters A, 379(34), 1902–1905.
  • Zhan, H., Gu, Y., Yan, C., & Yarlagadda, P. K. (2014). Bending properties of Ag nanowires with pre-existing surface defects. Computational Materials Science, 81, 45–51.
  • Pak, O. S., Gao, W., Wang, J., Lauga E. (2011). High-speed propulsion of flexible nano wire motors: theory and experiments, Soft Matter., 7, 8169–8181.
  • Weinberger, C. R., Cai, W. (2012). Plasticity of metal nano wires.J. Mater. Chem. 22, 3277–3292.
  • Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., Carney, T. J., Hu, L., Fan, S., & Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 8 (6), 421-425.
  • Jang, J., Hyun, B. G., Ji, S., Cho, E., An, B. W., Cheong, W. H., & Park, J. U. (2017). Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 9 (9), e432.
  • Ji, S., Jang, J., Cho, E., Kim, S. H., Kang, E. S., Kim, J., Kim, H. K., Konh, H., Kim, S. K., Kim, J. Y., Park, J. U. (2017). High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials, 29, 1700538.
  • Liu, H., Zhou, J. (2016). Plasticity in nanotwinned polycrystalline Ni nanowires under uniaxial compression. Materials Letters, 163, 179–182.
  • Wang, L., Zhang, Z., Han, X. (2013). In situ experimental mechanics of nanomaterials at the atomic scale.NPG Asia Materials, 5, e40.
  • Lu, L., Shen, Y., Chen, X., Qian, L., Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422–426.
  • Lu, L., Chen, X., Huang, X., Lu, K. (2009). Revealing the maximum strength in nanotwinned copper. Science, 323, 607–610.
  • Hammami, F., & Kulkarni, Y. (2014). Size effects in twinned nanopillars. Journal of Applied Physics, 116, 033512.
  • Li, X., Wei, Y., Lu, L., Lu, K., &Gao, H. (2010). Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 464, 877-880.
  • Wei, Y. (2011). Scaling of maximum strength with grain size in nanotwinned fcc metals. Physical Review B, 83, 132104.
  • Afanasyev, K. A., & Sansoz, F. (2007). Strengthening in Gold Nanopillars with Nanoscale Twins.Nano Letters, 7, 2056-2062.
  • Cao, A. J., Wei, Y. G., & Mao, S. X. (2007). Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Applied Physics Letters, 90, 151909.
  • Deng C., & Sansoz, F. (2009). Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Applied Physics Letters, 95, 091914.
  • Deng, C., & Sansoz, F. (2009). Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni. Acta Materialia, 57, 6090-6101.
  • Jang, D., Li, X., Gao, H., & Greer, J. R. (2012). Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnology, 7, 594-601.
  • Sofiah, A. G. N., Samykano, M., Kadirgama, K., Mohan, R. V., Lah, N. A. C. (2018). Metallic nanowires: Mechanical properties-Theory and experiment. Applied Materials Today, 11, 320–337.
  • Spearot, D. E., Tschopp, M. A., Jacob, K. I., McDowell, D. L. (2007). Tensile strength of <100> and <110> tilt bicrystal copper interfaces. Acta Materialia, 55(2), 705-714.
  • Spearot, D. E., Capolungo, L., Qu, J., Cherkaoui, M. (2008). On the elastic tensile deformation of <100>bicrystal interfaces in copper. Computational. Material Science, 42(1), 57-67.
  • Rapaport, D. (2004). The art of molecular dynamics simulation, 2nd ed. Cambridge University press., 199-244.
  • Leach, A. R., Schomburg, D. (2001). Molecular Modelling: Principles and Applications, 2nd.ed. Longman, London, 353-406.
  • Finbow, G. M., Lynden-Bell, R. M., Mcdonald, I. R. (1997). Atomistic simulation of the stretching of nanoscale metal wires. Molecular Physics, 92, 705–714.
  • Branicio, P. S., Rino, J. P. (2000). Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study. Physical Review B, 62, 16950–16955.
  • Nakamura, A., Brandbyge, M., Hansen, L. B., Jacobsen, K. W. (1999). Density functional simulation of a breaking nanowire.Physical Review Letters, 82, 1538–1541.
  • Walsh, P., Li, W., Kalia, R. K., Nakano, A., Vashishta, P., Saini, S. (2001). Structural Transformation, Amorphization, and Fracture in Nanowires: A Multi-million Atom Molecular Dynamics Study. Applied Physics Letters, 78, 3328–3330.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Ozgen, S., Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica Bi 334, 375-381.
  • Jacobus, K., Sehitoglu, H., Balzer, M. (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Malins, A., Williams, S. R., Eggers, J., Royall, C. P. (2013). Identification of structure in condensed matter with the topological cluster classification. The Jouurnal of Chemical Physics, 139, 234506.
  • Stukowski, A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Foiles, S. M., Baskes, M. I., & Daw, M. S. (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 33, 7983.
  • Gao, Y., Sun, Y., Yang, Y., Sun, Q., Zhao, J. (2015). Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires. Molecular Simulations, 41, 1546.
  • Hou, Z., Xiao, Q., Wang, Z., Wang, J., Liu, R., Wang, C. (2020). Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B, 581, 411952.
  • Stukowski, A. (2010). Atomic- Scale Modeling of Nanostructured Metals and Alloys. Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Technische Universität, Darmstadt.
  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool.Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • Bañuelos, E. U., Aburto, C. C., Arce, A. M. (2016). A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids. The Journal of Chemical Physics, 144, 094504.
  • Fanga, R., Wanga, W., Guoa, L., Zhanga, K., Zhanga, X., Lib, H. (2020). Atomic insight into the solidification of Cu melt confined in graphene Nanoslits.Journal of Crystal Growth, 532, 125382.
  • Wen, Y. H., Zhang, Y., Wang, Q., Zheng J. C., Zhu, Z. Z. (2010). Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science, 48, 513-519.
  • Wu, H. A. (2006). Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Hyde, B., Espinosa, H. D., Farkas, D. (2005). An atomistic investigation of elastic and plastic properties of Au nanowires. The Journal of The Minerals, Metals & Materials Society, 57, 62-66.
  • Yin, Q., Wang, Z., Mishra, R., & Xia, Z. (2017). Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum. Aip Advances, 7, 015040.
  • Deng, C., Sansoz, F. (2009). Near-Ideal Strength in Gold Nanowires Achieved through Microstructural Design. ACS Nano, 3, 3001.
  • Guo, X., Xia, Y. Z. (2011). Repulsive force vs. source number: Competing mechanisms in the yield of twinned gold nanowires of finite length. Acta Materialia, 59, 2350.
  • Paul, S. K. (2018). Effect of twist boundary angle on deformation behavior of 〈100〉FCC copper nanowires. Computational Materials Science, 150, 24–32.
  • Kardani, A., & Montazeri, A. (2020). Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Scientific Reports, 10, 9745.
  • Bejaud, R., Durinck, J., & Brochard, S. (2018). Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study. Acta Materialia, 144, 314–324.
  • Puksic, N., Jenko, M., Godec, M., & Mcguiness, P. J. A. (2017). comparison of the uniaxial deformation of copper and nickel (1119). surfaces: A molecular dynamics study. Scientific Reports, 7, 42234.
  • Christian, J. W., Mahajan, S. (1995). Deformation twinning. Prog.Mater Sci., 39, 1– 157.
  • Beyerlein, I. J., Zhang, X., Misra, A. (2014). Growth twins and deformation twins in metals. Annu. Rev. Mater. Res., 44, 329–363.
  • Zhao, X., Lu, C., Tieu, A. K., Zhan, L., Huang, M., Su, L., Pei, L., Zhang, L. (2018). Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations. Computational Materials Science, 142, 59–71.
  • Jang, D., Li, X., Gao, H., Greer, J. (2012). Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnolgy, 7, 594.
  • Ezaz, T., Sangid, M. D., Sehitoglu, H. (2011). Energy barriers associated with slip twin interactions. Phil. Mag.,91, 1464-1488.
  • Farkas, D., & Patrick, L. (2009). Tensile deformation of fcc Ni as described by an EAM potential. Philos. Mag., 89(34),3435–3450.
  • Bitzek, E., Derlet, P. M., Anderson, P. M., & Swygenhoven, H. V. (2008). The stress-strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Materialia, 56(17), 4846–4857.
  • Froseth, A. G., Derlet, P. M., & Swygenhoven, H. V. (2006). Vicinal twin boundaries providing dislocation sources in nanocrystalline.Al. Scr. Mater., 54(3), 477–481.
  • Park, H. S., Gall, K., Zimmerman, J. A. (2006). Deformation of fcc nanowires by twinning and slip. Journal of the Mechanics and Physics of Solids, 54, 1862–1881.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 29 Mart 2022
Kabul Tarihi 7 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kazanç, S. (2022). Ni Nano Telinin Deformasyon Davranışına İkiz Sınır Aralığının Etkisi: Moleküler Dinamik Çalışması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 855-865. https://doi.org/10.35193/bseufbd.1095036