Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Different Amount of Cerium and Silicon in Aluminum Alloys

Yıl 2020, , 980 - 993, 30.12.2020
https://doi.org/10.35193/bseufbd.723326

Öz

The aim of this study is the synthesis and the microstructural investigation of Al-Ce alloys, which can be a good alternative to commercial Al-Si alloys that can be used at a limited level especially in high temperature applications. Within this context, commercially available Al-9Si, Al-12.5Si and Al-18Si (wt. % Si) alloys and Al-13.5Ce, Al-18Ce and Al-27Ce (wt. % Ce) alloys were compared. While α-Al, eutectic Al-Si, primary Si structures were observed in Al-Si alloys; α-Al, eutectic fine Al11Ce3 and primary coarse Al11Ce3 intermetallic particles were identified in Al-Ce alloys. In addition, while Al11Ce3 phase decreased depending on the increase of added Ce amount in Al-Ce alloy, the amount and size of coarse Al11Ce3 intermetallic structures increased. The increase in the amount of alloying elements added to the alloy increased the hardness values of the alloys. When the hardness values of these two alloys group were compared, it was observed that the hardness values of Al-Ce alloys were lower than that of Al-Si alloys.

Kaynakça

  • Davis,J.R.(1993). Aluminum and Aluminum Alloys.
  • Miller,W.S., Zhuang,L., Bottema,J., Wittebrood,A., De Smet,P., Haszler,A., &Vieregge A. (2000)Recent development in aluminium alloys for the automotive industry, Mat Sci Eng a-Struct, 280, 37-49.
  • Gruzleski,J.E.,&Closset,B.M. (1990). The treatment of liquid aluminum-silicon alloys, American Foundrymen’s Society.
  • Stadler,F., Antrekowitsch,H., Fragner,W., Kaufmann,H., Pinatel,E.R., &Uggowitzer,P.J.(2013). The effect of main alloying elements on the physical properties of Al-Si foundry alloys, Mat Sci Eng a-Struct, 560, 481-491.
  • Zamani,M. (2015).Al-Si Cast Alloys Microstructure and Mechanical Properties at Ambient and Elevated Temperature, in: School of Engineering Jönköping University.
  • Weiss,D. (2019). Improved High-Temperature Aluminum Alloys Containing Cerium, J Mater Eng Perform, 28, 1903–1908.
  • Sims,Z.C., Weiss,D., McCall,S.K., McGuire,M.A., Ott,R.T., Geer,T., Rios,O.,&Turchi,P.A.E. (2016). Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development, Jom-Us, 68, 1940-1947.
  • Wang,L., Makhlouf,M.,&Apelian D. (1995). Aluminium die casting alloys: Alloy composition, microstructure, and properties-performance relationships, Int Mater Rev, 40, 221-238.
  • Liu,Y., Michi,R.A. &Dunand,D.C. (2019). Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance, Mat Sci Eng a-Struct, 767, 138440.
  • Knipling,K.E., Siedman,D.N.,&Dunand,D.C.(2011). Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys, Acta Mater, 59, 943-954.
  • Sun,Y., Hebert,R.J., Fennessy,C., Tulyani,S.,&Aindow,M. (2019). Eutectic microstructures in dilute Al-Ce and Al-Co alloys, Mater Charact, 154, 269-276.
  • Sims,Z.C., Rios,O., Weiss,D., Turchi,P.A.E., Perron,A., Lee,J.R., &Li,T.T. (2017). High Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials Horizons, 4, 1070-1078.
  • Weiss,D. (2017). Castability and Characteristics of High Cerium Aluminum Alloys, in: T.R. Vijayaram (Ed.) Advanced Casting Technologies, Intechopen, pp. 47-56.
  • Makhlouf,M., &Guthy,H.V. (2001). The aluminum–silicon eutectic reaction: mechanisms and crystallography, Journal of Light Metals, 1, 199-218.
  • Xu,C.L., Wang,H.Y., Liu,C., &Jiang,Q.C. (2006). Growth of octahedral primary silicon in cast hypereutectic Al–Si alloys, Journal of Crystal Growth, 291, 540-547.
  • Wang,R.Y., Lu,W.H., &Hogan,L.M. (1997). Faceted growth of silicon crystals in Al-Si alloys, Metallurgical and Materials Transactions A 28, 1233-1243.
  • West,R., &Fredriksson,H. (1985). On the mechanism of facetted growth J Mater Sci Technol, 20, 1061-1068.
  • Taylor,J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Materials Science, 1, 19-33.
  • Irizalp,S.G., &Saklakoglu,N. (2014). Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy, Engineering Science and Technology, an International Journal, 17, 58-62.
  • Ferdian,D., Josse,C., Nguyen,P., Gey,N., Thebault,Y., Malard,B., Lacaze,J., &Salvo,L. (2015). Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy, Metallurgical and Materials Transactions A, 46, 2814-2818.

Farklı Miktarlarda Seryum ve Silisyum İçeren Alüminyum Alaşımlarının Karşılaştırılması

Yıl 2020, , 980 - 993, 30.12.2020
https://doi.org/10.35193/bseufbd.723326

Öz

Bu çalışmanın amacı, özellikle yüksek sıcaklık uygulamalarında sınırlı seviyede kullanılabilen ticari Al-Si alaşımlarına iyi bir alternatif olabilecek Al-Ce alaşımlarının sentezlenmesi ve mikroyapısal açıdan incelenmesidir. Bu kapsamda ticari olarak Al-9Si Al-12,5Si ve Al-18Si (ağırlıkça % Si) alaşımlarıyla, Al-13,5Ce, Al-18Ce ve Al-27Ce (ağırlıkça % Ce) alaşımları karşılaştırılmıştır. Al-Si alaşımlarında α-Al, ötektik Al-Si, birincil Si yapıları, Al-Ce alaşımlarında ise α-Al, ötektik ince Al11Ce3 ve birincil kaba Al11Ce3 intermetalik parçacıklarının olduğu tespit edilmiştir. Al-Ce alaşımı içerisine katkılandırılan Ce miktarı artışına bağlı olarak ötektik Al11Ce3 fazı azalırken, kaba Al11Ce3 intermetalik yapılarının miktarı ve iriliği artmaktadır. Alaşım içerisine katkılandırılan alaşım elementleri miktarının artışı, alaşımların sertlik değerlerini arttırmıştır. Bu iki alaşım grubunun sertlik değerleri karşılaştırıldığında Al-Si alaşımlarının sertlik değerleri Al-Ce alaşımlarından daha yüksek olduğu tespit edilmiştir.

Kaynakça

  • Davis,J.R.(1993). Aluminum and Aluminum Alloys.
  • Miller,W.S., Zhuang,L., Bottema,J., Wittebrood,A., De Smet,P., Haszler,A., &Vieregge A. (2000)Recent development in aluminium alloys for the automotive industry, Mat Sci Eng a-Struct, 280, 37-49.
  • Gruzleski,J.E.,&Closset,B.M. (1990). The treatment of liquid aluminum-silicon alloys, American Foundrymen’s Society.
  • Stadler,F., Antrekowitsch,H., Fragner,W., Kaufmann,H., Pinatel,E.R., &Uggowitzer,P.J.(2013). The effect of main alloying elements on the physical properties of Al-Si foundry alloys, Mat Sci Eng a-Struct, 560, 481-491.
  • Zamani,M. (2015).Al-Si Cast Alloys Microstructure and Mechanical Properties at Ambient and Elevated Temperature, in: School of Engineering Jönköping University.
  • Weiss,D. (2019). Improved High-Temperature Aluminum Alloys Containing Cerium, J Mater Eng Perform, 28, 1903–1908.
  • Sims,Z.C., Weiss,D., McCall,S.K., McGuire,M.A., Ott,R.T., Geer,T., Rios,O.,&Turchi,P.A.E. (2016). Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development, Jom-Us, 68, 1940-1947.
  • Wang,L., Makhlouf,M.,&Apelian D. (1995). Aluminium die casting alloys: Alloy composition, microstructure, and properties-performance relationships, Int Mater Rev, 40, 221-238.
  • Liu,Y., Michi,R.A. &Dunand,D.C. (2019). Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance, Mat Sci Eng a-Struct, 767, 138440.
  • Knipling,K.E., Siedman,D.N.,&Dunand,D.C.(2011). Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys, Acta Mater, 59, 943-954.
  • Sun,Y., Hebert,R.J., Fennessy,C., Tulyani,S.,&Aindow,M. (2019). Eutectic microstructures in dilute Al-Ce and Al-Co alloys, Mater Charact, 154, 269-276.
  • Sims,Z.C., Rios,O., Weiss,D., Turchi,P.A.E., Perron,A., Lee,J.R., &Li,T.T. (2017). High Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials Horizons, 4, 1070-1078.
  • Weiss,D. (2017). Castability and Characteristics of High Cerium Aluminum Alloys, in: T.R. Vijayaram (Ed.) Advanced Casting Technologies, Intechopen, pp. 47-56.
  • Makhlouf,M., &Guthy,H.V. (2001). The aluminum–silicon eutectic reaction: mechanisms and crystallography, Journal of Light Metals, 1, 199-218.
  • Xu,C.L., Wang,H.Y., Liu,C., &Jiang,Q.C. (2006). Growth of octahedral primary silicon in cast hypereutectic Al–Si alloys, Journal of Crystal Growth, 291, 540-547.
  • Wang,R.Y., Lu,W.H., &Hogan,L.M. (1997). Faceted growth of silicon crystals in Al-Si alloys, Metallurgical and Materials Transactions A 28, 1233-1243.
  • West,R., &Fredriksson,H. (1985). On the mechanism of facetted growth J Mater Sci Technol, 20, 1061-1068.
  • Taylor,J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys, Procedia Materials Science, 1, 19-33.
  • Irizalp,S.G., &Saklakoglu,N. (2014). Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy, Engineering Science and Technology, an International Journal, 17, 58-62.
  • Ferdian,D., Josse,C., Nguyen,P., Gey,N., Thebault,Y., Malard,B., Lacaze,J., &Salvo,L. (2015). Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy, Metallurgical and Materials Transactions A, 46, 2814-2818.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sezgin Cengiz 0000-0002-4236-7084

Yayımlanma Tarihi 30 Aralık 2020
Gönderilme Tarihi 19 Nisan 2020
Kabul Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Cengiz, S. (2020). Farklı Miktarlarda Seryum ve Silisyum İçeren Alüminyum Alaşımlarının Karşılaştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 980-993. https://doi.org/10.35193/bseufbd.723326