Araştırma Makalesi
BibTex RIS Kaynak Göster

Green Synthesis, Optimization, and Characterization of Silver Nanoparticles from Euphorbia rigida Leaf Extract and Investigation of Their Antimicrobal Activities

Yıl 2021, , 512 - 522, 31.12.2021
https://doi.org/10.35193/bseufbd.843005

Öz

Green synthesis is a biological method known for being environment-friendly, cheap and for retrieval of nanoparticles with ease, which is preferred more than chemical and physical methods. Various metallic nanoparticles with potent bioactivities have been synthesized using plant extracts. In this study, synthesis of silver nanoparticles (AgNPs) using the aqueous leaf extract of Euphorbia rigida was investigated. Their antibacterial activity was determined using microdilution methods. The optimization of the synthesis was performed via the adjustment of different parameters including pH, temperature, concentration of the plant extract, the different concentrations of AgNO3, and synthesis time using UVvisible spectroscopy. Silver nanoparticles (Er-AgNPs) that were synthesized by Euphorbia rigida characterized by Dynamic Light Scattering (DLS) and Scanning Electron Microscope (SEM) analyses and their antimicrobial potential were tested on six different pathogens. The synthesis process resulted in spherical-shaped NPs with a size ranging between 50-75nm. The AgNPs demonstrated a strong antimicrobial activity against various pathogens (Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Staphylococcus epidermidis, Salmonella enteritidis, Salmonella typhimurium, Listeria monocytogenes and Candida albicans). The results showed that the synthesized Er-AgNPs can be used as a biological material for biomedical, pharmaceutical, biotechnology and industrial areas. In this study, the antimicrobial potential of silver nanoparticles which are prepared using Euphorbia rigida leaf extract isreported for the first time. 

Teşekkür

The scanning electron microscopy (SEM) measurements for surface morphology of nanoparticles were performed in the Ege University Application and Research Center for Testing and Analysis (EGE-MATAL). I also thank Associate professor Hasan YILDIRIM for kindly providing the plant.

Kaynakça

  • Alsaba, M. T., Al Dushaishi, M. F., & Abbas, A. K. (2020). A comprehensive review of nanoparticles applications in the oil and gas industry. Journal of Petroleum Exploration and Production Tech-nology, 111
  • Mankad, M., Patil, G., Patel, D., Patel, P., & Patel, A. (2020). Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. Arabian Journal of Chemistry, 13(1), 2865-2872.
  • Zhao, X., Zhou, L., Riaz Rajoka, M.S., Yan, L., Jiang, C., Shao, D., & Jin, M. (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6), 817-835.
  • Zepon, K.M., Marques, M.S., da Silva Paula, M.M., Morisso, F.D.P., & Kanis, L. A. (2018). Facile, green and scalable method to produce carrageenan-based hydrogel containing in situ synthesized AgNPs for application as wound dressing. International Journal of Biological Macromolecules, 113, 51-58.
  • Özbilgin, S. & Çitoğlu, G. (2012). Uses of some Euphorbia species in traditional medicine in Turkey and their biological activities. Turkish Journal of Pharmaceutical Sciences, 9(2), 241-256.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227.
  • Kocazorbaz, E., Un, R., Erdag, A., & Zihnioglu, F. (2017). Inhibitory effects of some bryophytes on glutathione-s-transferase. Current Enzyme Inhibition, 13(1), 34-40.
  • Christel, Q. D. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72, 35-42.
  • Wang L, Hu C, & Shao L (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.
  • Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology.
  • Elbaghdady, K., El-Shatoury, E. I. N. A. S., Abdallah, O., & Khalil, M. (2018). Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turkish Journal of Biology, 42(4), 319-328.
  • Qasim Nasar M, Zohra T, Khalil A T, Saqib S, Ayaz M, Ahmad A, & Shinwari Z K (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chemistry Letters and Reviews, 12(3), 310-322.
  • Balavandy, S. K., Shameli, K., Biak, D. R. B. A., & Abidin, Z. Z. (2014). Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chemistry Central Journal, 8(1), 11
  • Nahar, K., Aziz, S., Bashar, M., Haque, M., & Al-Reza, S. M. (2020). Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. International Journal of Nano Dimension, 11(1), 88-98.
  • Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958-7965.
  • Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K.S., & Ravikumar, V. (2013). Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids and Surfaces B: Biointerfaces, 108, 80–84.
  • Ayışığı, M., Yalçın, T., & Aktaş, L.Y. (2019). Antimicrobial Potentials of Phyto-synthesized Silver Nanoparticles from Laurus nobilis L.CBU Journal of Science, 15(3), 317-321.
  • Korkmaz, N., Ceylan, Y., Hamid, A., Karadağ, A., Bülbül, A. S., Aftab, M. N., Çevik, Ö., & Şen, F. (2020). Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. Journal of Drug Delivery Science and Technology, 59, 101864.
  • Korkmaz, N. (2020). Bioreduction: the biological activity, characterization, and synthesis of silver. Turkish Journal of Chemistry, 44(2), 325.

Euphorbia rigida Yaprak Ekstraktından Gümüş Nanopartiküllerin Sentezi, Optimizasyonu ve Karakterizayonu ve Antimikrobiyal Potansiyellerinin Araştırılması

Yıl 2021, , 512 - 522, 31.12.2021
https://doi.org/10.35193/bseufbd.843005

Öz

Yeşil sentez; çevre dostu ve maliyet açısından ucuz olması, kimyasal ve fiziksel yöntemlerden daha çok tercih edilen nanopartiküllerin kolay bir şekilde elde edilmesi ile bilinen biyolojik bir yöntemdir. Potansiyel biyolojik aktiviteye sahip çeşitli metallik nanopartiküller bitki özütleri kullanılarak sentezlenmektedir. Bu çalışmada, sütleğengil (Euphorbia rigida) yaprak sulu özütü kullanılarak, yeşil sentez yöntemi ile gümüş nanopartikülleri (AgNP) sentezlendi. Sentezlenen nanpartikülerin antimikrobiyal aktiviteleri mikrodilüsyon yöntemi ile belirlendi.Yeşil sentezin optimizasyonu, sıcaklık, pH, sentez zamanı, AgNO3 ve bitki özütünün farklı konsantrasyonları gibi farklı parametrelerin denenmesi ile gerçekleştirildi. Euphorbia rigida yaprak özütünden
sentezlenen gümüş nanopartiküller (Er-AgNPs), Ultraviyole/görünür ışık absorbsiyon spektrofotometresi (Uvvis), Dinamik ışık saçılımı (DLS), Taramalı Elektron Mikroskobu (SEM) analizleri ile karakterize edildi. Altı farklı patojene karşı antimikrobiyal aktiviteleri belirlendi. Bu çalışmada, Euphorbia rigida bitkisinin yaprak özütüne ait örneğin parçacık boyutunun histogramının 50 ile 75 nm olan küresel yapılı Ag nanopartiküller sentezlendi. Er-AgNPs’ler çeşitli patojenlere (Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Staphylococcus epidermidis, Salmonella enteritidis, Salmonella typhimurium, Listeria monocytogenes and Candida albicans) karşı güçlü bir antimikrobiyal aktivite gösterdi. Sonuç olarak, sentezlenen Er-AgNPs biyomedikal, farmasötik, biyoteknoloji ve endüstriyel alandaki uygulamalar için biyolojik bir materyal olarak kullanılabilir. Bu çalışmada, ilk kez Euphorbia rigida yaprak özütü kullanılarak hazırlanan gümüş nanopartiküllerin antimikrobiyal aktivitesi belirlendi.

Kaynakça

  • Alsaba, M. T., Al Dushaishi, M. F., & Abbas, A. K. (2020). A comprehensive review of nanoparticles applications in the oil and gas industry. Journal of Petroleum Exploration and Production Tech-nology, 111
  • Mankad, M., Patil, G., Patel, D., Patel, P., & Patel, A. (2020). Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. Arabian Journal of Chemistry, 13(1), 2865-2872.
  • Zhao, X., Zhou, L., Riaz Rajoka, M.S., Yan, L., Jiang, C., Shao, D., & Jin, M. (2018). Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6), 817-835.
  • Zepon, K.M., Marques, M.S., da Silva Paula, M.M., Morisso, F.D.P., & Kanis, L. A. (2018). Facile, green and scalable method to produce carrageenan-based hydrogel containing in situ synthesized AgNPs for application as wound dressing. International Journal of Biological Macromolecules, 113, 51-58.
  • Özbilgin, S. & Çitoğlu, G. (2012). Uses of some Euphorbia species in traditional medicine in Turkey and their biological activities. Turkish Journal of Pharmaceutical Sciences, 9(2), 241-256.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227.
  • Kocazorbaz, E., Un, R., Erdag, A., & Zihnioglu, F. (2017). Inhibitory effects of some bryophytes on glutathione-s-transferase. Current Enzyme Inhibition, 13(1), 34-40.
  • Christel, Q. D. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72, 35-42.
  • Wang L, Hu C, & Shao L (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.
  • Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology.
  • Elbaghdady, K., El-Shatoury, E. I. N. A. S., Abdallah, O., & Khalil, M. (2018). Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turkish Journal of Biology, 42(4), 319-328.
  • Qasim Nasar M, Zohra T, Khalil A T, Saqib S, Ayaz M, Ahmad A, & Shinwari Z K (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chemistry Letters and Reviews, 12(3), 310-322.
  • Balavandy, S. K., Shameli, K., Biak, D. R. B. A., & Abidin, Z. Z. (2014). Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chemistry Central Journal, 8(1), 11
  • Nahar, K., Aziz, S., Bashar, M., Haque, M., & Al-Reza, S. M. (2020). Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. International Journal of Nano Dimension, 11(1), 88-98.
  • Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101(20), 7958-7965.
  • Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K.S., & Ravikumar, V. (2013). Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids and Surfaces B: Biointerfaces, 108, 80–84.
  • Ayışığı, M., Yalçın, T., & Aktaş, L.Y. (2019). Antimicrobial Potentials of Phyto-synthesized Silver Nanoparticles from Laurus nobilis L.CBU Journal of Science, 15(3), 317-321.
  • Korkmaz, N., Ceylan, Y., Hamid, A., Karadağ, A., Bülbül, A. S., Aftab, M. N., Çevik, Ö., & Şen, F. (2020). Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. Journal of Drug Delivery Science and Technology, 59, 101864.
  • Korkmaz, N. (2020). Bioreduction: the biological activity, characterization, and synthesis of silver. Turkish Journal of Chemistry, 44(2), 325.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ebru Kocadağ Kocazorbaz 0000-0001-5611-5235

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 18 Aralık 2020
Kabul Tarihi 4 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kocadağ Kocazorbaz, E. (2021). Green Synthesis, Optimization, and Characterization of Silver Nanoparticles from Euphorbia rigida Leaf Extract and Investigation of Their Antimicrobal Activities. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 512-522. https://doi.org/10.35193/bseufbd.843005