Araştırma Makalesi
BibTex RIS Kaynak Göster

Asenkron Motor Geometrisinin Motor Yol Alma Süresine Etkilerinin İncelenmesi

Yıl 2021, , 575 - 585, 31.12.2021
https://doi.org/10.35193/bseufbd.899158

Öz

Asenkron motorlar endüstride en çok kullanılan motor olması nedeniyle, farklı uygulamalarda motorun yol alma süresi büyük önem kazanmaktadır. Özellikle ağır yüklerin yol alması sırasında çekilen büyük akımlar motorda çeşitli sorunlara neden olmaktadır. Asenkron motorda yol alma süresinin ve çekilen akımın sınırlandırılması için farklı yöntemler kullanılmaktadır. Bu çalışmada asenkron motorun rotor oluk yüksekliğinin, hava aralığı boyunun ve farklı rotor oluk geometrilerinin motorun yol alma süresine etkileri araştırılmıştır. RMxprt programı ile motor tasarımı yapılmış, daha sonrasında Rmxprt programından elde edilen parametreler kullanılarak MATLABSimulink modeli oluşturulmuş ve motorların yol alma süreleri elde edilmiştir. Ayrıca her bir motor modeli için devir sayısındaki salınımlar incelenmiştir. Modellemelerde 13 kW, 400 V, 3 fazlı sincap kafesli asenkron motor kullanılmıştır.

Kaynakça

  • Pejovski, D., & Velkovski, B. (2016). Calculation of induction motor starting parameters using MATLAB. Infoteh-Jahorina, 15, 879-884.
  • Garg, A., & Tomar, A. (2015). Starting time calculation for induction motor. Journal of Electrical & Electronic Systems, 4(2), 1-4.
  • Khoucha, F., Marouani, K., Kheloui, A., & Benbouzid, M. E. H. (2006). A Minimization of Speed Ripple of Sensorless DTC for controlled Induction Motors used in Electric Vehicles. 32nd Annual Conference on IEEE Industrial Electronics, 6-10 November, Paris, France, 1339-1344.
  • Otkun, Ö. (2020). Scalar speed control of induction motors with difference frequency, Journal of Polytechnic, 23(2), 267-276.
  • Sadhwani, R., & Ragavan, K. (2016). A Comparative Study of Speed Control Methods for Induction Motor Fed by Three Level Inverter. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016), 4-6 July, Delhi, India, 1-6.
  • Kocman, S., Orsag, P., & Pecinka, P. (2017). Simulation of start-up behaviour of induction motor with direct online connection. Power Engineering and Electrical Engineering, 15(5), 754-762.
  • Firago, B., & Vasilyev, D. (2012). Soft starting and braking application for squirrel-cage induction motors operating in intermittent duty. Studia I Materialy, 66, 339-349.
  • Popa, G. N., Popa, I., Dinis, C. M., & Iagar, A. (2010). Determining Start Time for Three-Phase Cage Induction Motors that Drive Belt Transport Conveyers. 12th International Conference on Optimization of Electrical and Electronic Equipment, 447-452.
  • Aree, P. (2016). Starting Time Calculation of Large Induction Motors Using their Manufacturer Technical Data. 19th International Conference on Electrical Machines and Systems (ICEMS), 13 16 November, Chiba, Japan, 1-5.
  • Calasan, M. P. (2020). An invertible dependence of the speed and time of the induction machine during noload direct start-up. Automatika, 61(1), 141-149.
  • Grover, S., & Mankar, M. (2019). Minimization of starting torque and inrush current of induction motor by different starting methods using matlab/simulink. International Journal of Trend in Scientific Research and Development (IJTSRD), 3(3), 646-651.
  • Kim, Y. S. (2015). Analysis of starting torque and speed characteristics for squirrel cage induction motor according to material properties of rotor slot. Transactions on Electrical and Electronic Materials, 16(6), 328-333.
  • Ansys Maxwell 2D User’s Guide, 2012.
  • Mathworks, Simulink, Simulation and Model-Based Design, 2004.
  • Plesinger, J. (2015). Brushless DC traction motor 13 kW with permanent magnets. Czech Technical University in Prague, Faculty of Electrical Engineering, Czechia.
  • Bao, X.,Di, C., & Fang, Y. (2016). Analysis of slot leakage reactance of submersible motor with closed slots during starting transient operation. Journal of Electrical Engineering & Technology,11(1), 135-142.
  • Bernatt, J., & Bernatt, M. (2013). High power squirrel cage motors for heavy starting conditions. Przeglad Elektrotechniczny, R.89(2a), 25-27.
  • Aree, P. (2018). Precise analytical formula for starting time calculation of medium and high-voltage induction motors under conventional starter methods. Electrical Engineering, 100, 1195–1203.
  • Boldea, I., & Nasar, S. A. (2002). The Induction Machine Handbook, Crc Pres Llc, Washington.
  • Jeon, K. W., Chung, T. K., & Hahn, S. C. (2011). NEMA Class a Slot Shape Optimization of Induction Motor for Electric Vehicle Using Response Surface Method. IEEE International Conference on Electrical Machines and Systems. 20-23 August, Beijing, China, 1-4.

Investigation of the Effects of Induction Motor Geometry on Motor Starting Time

Yıl 2021, , 575 - 585, 31.12.2021
https://doi.org/10.35193/bseufbd.899158

Öz

Since induction motors are the most used motors in the industry, the starting time of the motor is of great importance for different applications. Especially large currents drawn during the movement of heavy loads cause various problems in the motor. Different methods are used to limit the starting time and the current drawn in the induction motor. In this study, the effects of rotor slot height, air gap length, and different rotor slot geometries on induction motor's starting time were investigated. Motor design was made with the RMxprt program, and MATLAB Simulink model was created using obtained parameters from Rmxprt, and then the starting times of the motors were obtained. In addition, the oscillations in the number of speeds were examined for each motor model. 13 kW, 400 V, 3 phase squirrel cage induction motor was used in the models. 

Kaynakça

  • Pejovski, D., & Velkovski, B. (2016). Calculation of induction motor starting parameters using MATLAB. Infoteh-Jahorina, 15, 879-884.
  • Garg, A., & Tomar, A. (2015). Starting time calculation for induction motor. Journal of Electrical & Electronic Systems, 4(2), 1-4.
  • Khoucha, F., Marouani, K., Kheloui, A., & Benbouzid, M. E. H. (2006). A Minimization of Speed Ripple of Sensorless DTC for controlled Induction Motors used in Electric Vehicles. 32nd Annual Conference on IEEE Industrial Electronics, 6-10 November, Paris, France, 1339-1344.
  • Otkun, Ö. (2020). Scalar speed control of induction motors with difference frequency, Journal of Polytechnic, 23(2), 267-276.
  • Sadhwani, R., & Ragavan, K. (2016). A Comparative Study of Speed Control Methods for Induction Motor Fed by Three Level Inverter. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2016), 4-6 July, Delhi, India, 1-6.
  • Kocman, S., Orsag, P., & Pecinka, P. (2017). Simulation of start-up behaviour of induction motor with direct online connection. Power Engineering and Electrical Engineering, 15(5), 754-762.
  • Firago, B., & Vasilyev, D. (2012). Soft starting and braking application for squirrel-cage induction motors operating in intermittent duty. Studia I Materialy, 66, 339-349.
  • Popa, G. N., Popa, I., Dinis, C. M., & Iagar, A. (2010). Determining Start Time for Three-Phase Cage Induction Motors that Drive Belt Transport Conveyers. 12th International Conference on Optimization of Electrical and Electronic Equipment, 447-452.
  • Aree, P. (2016). Starting Time Calculation of Large Induction Motors Using their Manufacturer Technical Data. 19th International Conference on Electrical Machines and Systems (ICEMS), 13 16 November, Chiba, Japan, 1-5.
  • Calasan, M. P. (2020). An invertible dependence of the speed and time of the induction machine during noload direct start-up. Automatika, 61(1), 141-149.
  • Grover, S., & Mankar, M. (2019). Minimization of starting torque and inrush current of induction motor by different starting methods using matlab/simulink. International Journal of Trend in Scientific Research and Development (IJTSRD), 3(3), 646-651.
  • Kim, Y. S. (2015). Analysis of starting torque and speed characteristics for squirrel cage induction motor according to material properties of rotor slot. Transactions on Electrical and Electronic Materials, 16(6), 328-333.
  • Ansys Maxwell 2D User’s Guide, 2012.
  • Mathworks, Simulink, Simulation and Model-Based Design, 2004.
  • Plesinger, J. (2015). Brushless DC traction motor 13 kW with permanent magnets. Czech Technical University in Prague, Faculty of Electrical Engineering, Czechia.
  • Bao, X.,Di, C., & Fang, Y. (2016). Analysis of slot leakage reactance of submersible motor with closed slots during starting transient operation. Journal of Electrical Engineering & Technology,11(1), 135-142.
  • Bernatt, J., & Bernatt, M. (2013). High power squirrel cage motors for heavy starting conditions. Przeglad Elektrotechniczny, R.89(2a), 25-27.
  • Aree, P. (2018). Precise analytical formula for starting time calculation of medium and high-voltage induction motors under conventional starter methods. Electrical Engineering, 100, 1195–1203.
  • Boldea, I., & Nasar, S. A. (2002). The Induction Machine Handbook, Crc Pres Llc, Washington.
  • Jeon, K. W., Chung, T. K., & Hahn, S. C. (2011). NEMA Class a Slot Shape Optimization of Induction Motor for Electric Vehicle Using Response Surface Method. IEEE International Conference on Electrical Machines and Systems. 20-23 August, Beijing, China, 1-4.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Asım Gökhan Yetgin 0000-0003-3971-0504

Mehmet Murat Tezcan 0000-0002-5390-4527

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 18 Mart 2021
Kabul Tarihi 13 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yetgin, A. G., & Tezcan, M. M. (2021). Asenkron Motor Geometrisinin Motor Yol Alma Süresine Etkilerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 575-585. https://doi.org/10.35193/bseufbd.899158