Araştırma Makalesi
BibTex RIS Kaynak Göster

Çevre Sıcaklığının Dolaşımlı Akışkan Yataklı Kazanın Ekserji Performansı Üzerindeki Etkisi

Yıl 2019, Cilt: 6 Sayı: 2, 477 - 490, 26.12.2019
https://doi.org/10.35193/bseufbd.629904

Öz

Sunulan bu çalışmada, Eskişehir’in
Seyitgazi ilçesinde yer alan bir endüstriyel tesisteki 75 t/h buhar kapasiteli
dolaşımlı akışkan yataklı kazanın konvansiyonel ekserji analizi yapılmıştır.
Yapılan analizde; çevre sıcaklığındaki değişimin, kazan ve hava ısıtıcısının
ekserji performansına olan etkisi irdelenmiştir. Bunun için standart ölü hal
koşulu 25℃, 101,325 kPa ve ölçüm değerlerinin ortalaması olarak 17,27℃, 89,4
kPa’ın yanı sıra 30℃, 28℃, 20℃, 15℃ ve 12℃ için hesaplamalar yapılmıştır.
Dolaşımlı akışkan yataklı kazan bölümler halinde incelenmesinden ziyade bir
bütün olarak kabul edilmiştir. Hava ısıtıcısı ise kazandan ayrı olarak
değerlendirilmiştir. Yapılan hesaplamalar sonucunda kazan ve hava ısıtıcısında
gerçekleşen ekserji kayıpları belirlenmiştir. Ayrıca kazan ve hava ısıtıcısının
ekserji verimleri hesaplanarak ekserji performansı ortaya çıkarılmıştır. Bu
çalışma, dolaşımlı akışkan yataklı kazanın ve hava ısıtıcının ekserji performans
kriterlerinin çevre sıcaklığındaki değişimden önemli ölçüde etkilendiğini
göstermiştir.

Kaynakça

  • [1] Kanoğlu, M., Çarpınlıoğlu, M.Ö., Yıldırım, M. (2004) Energy and exergy analyses of an experimental open-cycle desiccant cooling system. Applied Thermal Engineering, 24, 919-932.
  • [2] Rosen, M.A., Le, M.N., Dincer, I. (2005) Efficiency analysis of a cogeneration and district energy system. Applied Thermal Engineering, 25, 147-159.
  • [3] Ozdemir, K., Hepbasli, A., Eskin, N. (2010) Exergoeconomic analysis of a fluidized-bed coal combustor (FBCC) steam power plant. Applied Thermal Engineering, 30, 1621-631.
  • [4] Oktay, Z. (2009) Investigation of coal-fired power plants in Turkey and a case study: Can plant. Applied Thermal Engineering, 29, 550-557. doi:10.1016/j.applthermaleng.2008.03.025
  • [5] Adibhatla, S., and Kaushik, S.C. (2014) Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation. Applied Thermal Engineering, 73, 51-65. http://dx.doi.org/10.1016/j.applthermaleng.2014.07.030
  • [6] Ganjehkaviri, A., Jaafar, M.N.M., Ahmadi, P., Barzegaravval, H. (2014) Modelling and optimization of combined cycle power plant based on exergoeconomic and environmental analyses. Applied Thermal Engineering, 67, 566-578. http://dx.doi.org/10.1016/j.applthermaleng.2014.03.018
  • [7] Zhang, C., Chen, S., Zheng, C., Lou, X. (2007). Thermoeconomic diagnosis of a coal fired power plant. Energy Conversion and Management, 48, 405-419. http://dx.doi:10.1016/j.enconman.2006.07.001
  • [8] Ganapathy, T., Alagumurthi, Gakkhar, R.P., Murugesan, K. (2009). Exergy analysis of operating lignite fired thermal power plant. Journal of Engineering Science and Technology Review, 2 (1), 123-130
  • [9] Gürtürk, M., and Oztop, H.F. (2016). Exergy analysis of a circulating fluidized bed boiler cogeneration power plant. Energy Conversion and Management, 120, 346-357. http://dx.doi.org/10.1016/j.enconman.2016.05.006
  • [10] Erdem, H.H., Akkaya, A.V., Cetin, B…, and Atas, S. (2009) Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey. International Journal of Thermal Sciences, 48, 2179-2186. doi:10.1016/j.ijthermalsci.2009.03.007
  • [11] Koroneos, C.J., Fokaides, P.A., Christoforou, E.A. (2014) Exergy analysis of a 300 MW lignite thermoelectric power plant. Energy:75, 304-311. http://dx.doi.org/10.1016/j.energy.2014.07.079
  • [12] Pattanayak, L., and Sahu, J.N. (2015) Steady state modeling on energy and exergy analysis of a pulverized coal fired thermal power plant. Asia-Pacific Journal Chemical Engineering, 10, 876-884.
  • [13] Bolatturk, A., Coskun, A., Geredelioglu, C. (2015) Thermodynamic and exergoeconomic analysis of Çayırhan thermal power plant. Energy Conversion and Management, 101, 371-378. http://dx.doi.org/10.1016/j.enconman.2015.05.072
  • [14] Ahmadi, G.R., and Toghraie, D. (2016) Energy and exergy analysis of Montazeri Steam Power Plant in Iran. Renewable and Sustainable Energy Reviews, 56:454-463. http://dx.doi.org/10.1016/j.rser.2015.11.074
  • [15] Si, N., Zhao, Z., Su., S…, and Xiang, J. (2017) Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant. Energy Conversion and Management, 147, 155-165. http://dx.doi.org/10.1016/j.enconman.2017.05.045
  • [16] Vandani, A.M.K., Bidi, M., Ahmadi, F. (2015) Exergy analysis and evolutionary optimization of boiler blowdown heat recovery in steam power plants. Energy Converison and Management, 106, 1-9 http://dx.doi.org/10.1016/j.enconman.2015.09.018
  • [17] Kang, S., Li, H., Liu, L., Lei, J., Zhang, G. (2016) Exergy analysis of a novel CHP-GSHP coupling system. Applied Thermal Engineering, 93, 308-314. http://dx.doi.org/10.1016/j.applthermaleng.2015.09.039
  • [18] Zhou, L., Xu, G., Zhao, S., Xu, C., Yang, Y. (2016) Parametric analysis and process optimization of steam cycle in double reheat ultra-supercritical power plants. Applied Thermal Engineering, 90, 652-660. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.047
  • [19] Fu, C., Anantharaman, R., Jordal, K., Gundersen, T. (2015). Thermal efficiency of coal-fired power plants: From theoretical to practical assessments. Energy Conversion and Management, 105, 530-544. http://dx.doi.org/10.1016/j.enconman.2015.08.019
  • [20] Topal, H., Taner, T. Naqvi, S.A.H., Altınsoy, Y., in, E., Ozkaymak, M. (2017). Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: A case study of power plant in Turkey. Energy, 140, 40-46. http://dx.doi.org/10.1016/j.energy.2017.08.042
  • [21] Xiong, J., Zhao, H., Zheng, C. (2011) Exergy analysis of a 600 MWe oxy-combustion pulverized-coal-fired power plant. Energy Fuels, 25, 3854-3864.
  • [22] Han, X., Liu, M., Wu, K., Chen, W., Xiao, F., Yan, J. (2016) Exergy analysis of the flue gas pre-dried lignite-fired power system based on the boiler with open pulverizing system. Energy, 106, 285-300. http://dx.doi.org/10.1016/j.energy.2016.03.047
  • [23] Elhelw, M., Dahma, K.S., Attia, A. (2019) Utilizng exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. https://dx.doi/10.1016/j.applthermaleng.2019.01.003
  • [24] Arslan, O., Kose, R. (2006) Thermoeconomic optimization of insulation thickness considering condensed vapor in buildings. Energy and Building, 38, 1400-1408. doi:http://dx.doi.org/10.1016/j.enbuild.2006.02.012
  • [25] Dincer, I., Rosen, M.A. (2007) Exergy, environment and sustainable development. Exergy. Amsterdam: Elsevier;36-59.
  • [26] Szargut, J., Morris, D.R., Steward, F.R. (1988) Exergy analysis of thermal chemical and metallurgical processes. New York: Hemisphere;
  • [27] Wall, G. (1977) Exergy-a useful concept within resource accounting. Göteborg, Sweden: Institute of Theoretical Physics. Report No:77-42.
  • [28] Rosen M.A., Dincer, I., Kanoglu, M. (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36(1), 128-37.
  • [29] Turan, O. (2015) An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy, 86, 722-736. http://dx.doi.org/10.1016/j.energy.2015.04.026
  • [30] Zhu, Y., Zhai, R., Peng, H., Yang, Y. (2016) Exergy destruction analysis of solar tower aided coal-fired power generation system using exergy and advanced exergetic methods. Applied Thermal Engineering, 108, 339-346. http://dx.doi.org/10.1016/j.applthermaleng.2016.07.116
  • [31] Naterer, G.F., Regulagadda, P., Dincer, I. (2010) Exergy analysis of a thermal power plant with measured boiler and turbine losses. Applied Thermal Engineering, 30, 970-976
  • [32] Oktay, Z. (2009) Investigation of coal-fired power plants in Turkey and a case study: can plant. Applied Thermal Engineering, 29, 550-557
  • [33] Wang, N., Wu, W., Yang, Y., Yang, Z., Fu, P. (2014). Exergy evaluation of a 600 MWe supercritical coal-fired power plant considering pollution emissions. Energy Procedia, 61, 1860-1863. http://dx.doi.org/10.1016/j.egypro.2014.12.229
  • [34] Hepbaslı, A. (2009). Exergetic modeling of oil shale-fired circulating fluidized bed systems. Energy Sources, Part A, 31, 325-337. http://dx.doi.org/10.1080/15567030801901182
  • [35] Callak, M., Balkan, F., Hepbasli, A. (2015). Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and a heat recovery steam generator. Energy Conversion and Management, 98, 54-58. http://dx.doi.org/10.1016/j.enconman.2015.03.039
  • [36] Behbahninia, A., Ramezani, S., Hejrandoost, M.L. (2017) A loss method for exergy auditing of steam boilers. Energy, 140, 253-260. http://dx.doi.org/10.1016/j.energy.2017.08.090
  • [37] Zhang, Q., Yi, H., Yu, Z.,..., Shen, B. (2018) Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data. Applied Thermal Engineering, 144, 614-627. https://doi.org/10.1016/j.applthermaleng.2018.08.069
  • [38] Sharma, M., and Singh, O. (2016) Exergy analysis of dual pressure HRSG for different dead states and varying steam generation states in gas/steam combined cycle power plant. Applied Thermal Engineering, 93, 614-622. http://dx.doi.org/10.1016/j.applthermaleng.2015.10.0132
  • [39] Kopac, M., and Hilalci, A. (2007) Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27, 1377-1385
  • [40] Regulagadda, P., Dincer, I., Naterer, G.F. (2010). Exergy analysis of a thermal power plant with measured boiler and turbine losses. Applied Thermal Engineering, 30, 970-976. http://dx.doi.org/10.1016/j.applthermaleng.2010.01.008
  • [41] Eskin, N., Gungor, A., Özdemir, K. (2009). Thermodynamic analysis of a FBCC steam power plant. Energy Conversion and Management, 50, 2428-2438. http://dx.doi.org/10.1016/j.enconman.2009.05.035
  • [42] Ozdil, N.F.T., Tantekin, A., Erbay, Z. (2016). Energy and exergy analyses of a fluidized bed coal combustor steam plant in textile industry. Fuel, 183, 441-448. http://dx.doi.org/10.1016/j.fuel.2016.06.091
  • [43] Arslan, O. (2005) Seyitömer termik santralı birinci ve ikinci yasa çözümlemeleri. Yüksek Lisans Tezi, Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya.
  • [44] Aljundi, I.H. (2009) Energy and exergy analysis of a steam power plant in Jordan. Applied Thermal Engineering, 29, 324-328. doi:10.1016/j.applthermaleng.2008.02.029
  • [45] Yazıcı, M. (2017) Dolaşımlı bir akışkan yataklı kazanın enerji ve ekserji analizi. Yüksek Lisans Tezi, Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Kütahya.
  • [46] Rant, Z. (1956). Exergy, a new word for technical available work. Forsch. Ing. Wis, 22(1), 36-37.
  • [47] Bejan, A., Tsatsaronis, G., Moran, M.J. Thermal Design and Optimization; Wiley; New York, 1996.
  • [48] Çengel, Y.A., and Boles, M.A. (2008) Thermodynamics on Engineering Approach (6th edition). P.445. ISBN 978-0-07-125771-8
  • [49] Çomaklı, K., Karslı, S., Çomaklı, Ö., Yılmaz, M. (2004) Termal sistemlerin ekserjetik analizi. Termodinamik Dergisi, 94-98.
  • [50] Balli, O. (2017) Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 124, 599-612. http://dx.doi.org/10.1016/j.energy.2017.02.121
  • [51] Yazici, H. (2016) Energy and exergy based evaluation of the renovated Afyon geothermal district heating system. Energy and Buildings, 127, 794-804. http://dx.doi.org/10.1016/j.enbuild.2016.06.036
  • [52] Van Gool, W. (1992) Exergy analysis of industrial processes. Energy, 17, 791-803.
  • [53] Şöhret, Y., Açıkkalp, E., Hepbasli, A., Karakoc, T.H. (2015) Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy, 90, 1219-1228. http://dx.doi.org/10.1016/j.energy.2015.06.071
  • [54] Coban, K., Colpan, C.O., Karakoc, T.H. (2017) Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1427-1436. http://dx.doi.org/10.1016/j.energy.2017.07.179
  • [55] Eboh, F.C., Ahlström, P., Richards, T. (2019) Evaluating improvements in waste-to-energy combined heat and power plant. Case Studies in Thermal Engineering, 14, 100476. https://doi.org/10.1016/j.csite.2019.100476
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mesut Yazıcı 0000-0001-6379-8396

Ramazan Köse 0000-0001-6041-6591

Yayımlanma Tarihi 26 Aralık 2019
Gönderilme Tarihi 6 Ekim 2019
Kabul Tarihi 9 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

APA Yazıcı, M., & Köse, R. (2019). Çevre Sıcaklığının Dolaşımlı Akışkan Yataklı Kazanın Ekserji Performansı Üzerindeki Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 477-490. https://doi.org/10.35193/bseufbd.629904