Araştırma Makalesi
BibTex RIS Kaynak Göster

Tarihi Eserlerin 3B Modellenmesi ve Artırılmış Gerçeklik ile Görselleştirilmesi

Yıl 2021, Cilt: 8 Sayı: 2, 1032 - 1043, 31.12.2021
https://doi.org/10.35193/bseufbd.1011064

Öz

Fotogrametri yöntemi; üç boyutlu modelleme, dijital belgeleme, görselleştirme, sanal müzeler oluşturma ve simülasyon alanında yeni fırsatlar sunmaktadır. Bu yöntem kullanılarak oluşturulan fotogerçekçi üç boyutlu model ile artırılmış gerçeklik ve görselleştirmenin kombinasyonu, tarihi eser ve kültürel mirasın sanal platformlarda etkileşimli sunumu için büyük bir potansiyele sahiptir. Mobil cihazların kullanımının oldukça artması ile birlikte ortaya çıkan mobil artırılmış gerçeklik uygulamaları, kullanıcılara hızlı ve kolay görsel sunum imkânları sunmuştur. Bu çalışmada fotogrametri yöntemi ile üretilen üç boyutlu model kullanılarak tarihi öneme sahip eserlerin mobil artırılmış gerçeklik uygulamalarında (aplikasyonlarında) etkileşimi araştırılmış ve örnek bir çalışma sunulmuştur. Öncelikle üç boyutlu model üretimi aktarılmış ardından iki farklı araç (Unity ve Augment) ile mobil artırılmış gerçeklik çalışması gerçekleştirilmiştir. Ayrıca eserin kendisine ait mobil aplikasyon geliştirilerek kültürel miras anlamında sanal, interaktif ve sürükleyici yeni deneyim ve fırsatların sunulması amaçlanmıştır.

Teşekkür

Çalışmada 3B modeli ve artırılmış gerçekliği yapılan Attika-ion tipi sütun kaidesine erişim imkânı veren Mersin St. Paul Anıt Müzesi’ne ve sütun kaidesi hakkında bilgi veren Öğr. Görevlisi Bilhan Subaşı’ya katkılarından dolayı teşekkür ederiz.

Kaynakça

  • Styliadis, A. D. (2008). Historical photography-based computer-aided architectural design: Demolished buildings information modeling with reverse engineering functionality. Automation in construction, 18(1), 51-69.
  • Ulvi, A. (2021). Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994-2021.
  • Boboc, R. G., Duguleană, M., Voinea, G. D., Postelnicu, C. C., Popovici, D. M., & Carrozzino, M. (2019). Mobile augmented reality for cultural heritage: Following the footsteps of Ovid among different locations in Europe. Sustainability, 11(4), 1167.
  • Remondino, F., & El‐Hakim, S. (2006). Image‐based 3D modelling: a review. The photogrammetric record, 21(115), 269-291.
  • Kasser, M., & Egels, Y. (2002). Digital photogrammetry.
  • Rinaudo, F., Chiabrando, F., Lingua, A., & Spanò, A. (2012). Archaeological site monitoring: UAV photogrammetry can be an answer. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B5), 583-588.
  • Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry. New York, 19.
  • Luhmann, T., Fraser, C., & Maas, H. G. (2016). Sensor modelling and camera calibration for close-range photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 37-46.
  • Bot, J. A., Irschick, D. J., Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., & Ikeshoji-Orlati, V. (2019). Using 3D photogrammetry to create open-access models of live animals: 2D and 3D software solutions. Grayburn et al., eds. D, 3, 54-72.
  • Kraus, K. (2007). Photogrammetry: geometry from images and laser scans. Walter de Gruyter, Berlin. ISBN: 978-3-11-019007-6.
  • Uslu, A., Polat, N., Toprak A. S., & Uysal, M. (2016). Kültürel Mirasın Fotogrametrik Yöntemle 3B Modellenmesi Örneği. Harita Teknolojileri Elektronik Dergisi, 8, 2, 165-176.
  • Uslu, A., & Uysal, M. (2017). Arkeolojik Eserlerin Fotogrametri Yöntemi İle 3 Boyutlu Modellenmesi: Demeter Heykeli Örneği. Geomatik, 2(2), 60-65.
  • Şenol, H., Memduhoglu, A., & Ulukavak, M. (2020). Multi instrumental documentation and 3D modelling of an archaeological site: a case study in Kizilkoyun Necropolis Area. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11 (3), 1241-1250.
  • Zeybek, M., &Kaya, A. (2020). Tarihi Yığma Kiliselerde Hasarların Fotogrametrik Ölçme Tekniğiyle İncelenmesi: Artvin Tibeti Kilisesi Örneği. Geomatik, 5 (1), 47-57.
  • Obradović, M., Vasiljević, I., Đurić, I., Kićanović, J., Stojaković, V., & Obradović, R. (2020). Virtual Reality Models Based on Photogrammetric Surveys—A Case Study of the Iconostasis of the Serbian Orthodox Cathedral Church of Saint Nicholas in Sremski Karlovci (Serbia). Applied Sciences, 10(8), 2743.
  • Marques, L., Tenedório, J. A., Burns, M., Romão, T., Birra, F., Marques, J., & Pires, A.(2017). Cultural Heritage 3D Modelling and visualisation within an Augmented Reality Environment, based on Geographic Information Technologies and mobile platforms. Architecture, City and Environment, 11(33), 117-136.
  • Panou, C., Ragia, L., Dimelli, D., & Mania, K.(2018). An architecture for mobile outdoors augmented reality for cultural heritage. ISPRS International Journal of Geo-Information, 7(12), 463.
  • Carrión-Ruiz, B., Blanco-Pons, S., Weigert, A., Fai, S., & Lerma, J. L. (2019). Merging photogrammetry and augmented reality: The Canadian Library of Parliament. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 367-371.
  • Paladini, A., Dhanda, A., Reina Ortiz, M., Weigert, A., Nofal, E., Min, A., & Santana Quintero, M.(2019). Impact of virtual reality experience on accessibility of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 929-936.
  • Uslu, A., & Uysal, M. (2020). Kültürel Mirasın Etkileşimli Keşfi İçin Mobil Artırılmış Gerçeklik ve Web Tabanlı Görselleştirme Teknolojilerinin Kullanılması: Sfenks Heykeli Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6), 1024-1031.
  • Şenol, H. İ., Ernst, F. B., & Akdağ, S. (2018). Kentsel Dönüşüm Alanlarının Geotasarım Yöntemi ile Planlanması: Eyyübiye Örneği. Harran Üniversitesi Mühendislik Dergisi, 3(3), 63-69.
  • Papagiannakis, G., Gurminder, S., & Nadia, M. T. (2008). A survey of mobile and wireless technologies for augmented reality systems.Comput. Animat. Virtual Worlds, vol. 19(1), 3-22, 2008.
  • Damala, A., Cubaud, P., Bationo, A., Houlier, P., & Marchal, I. (2008). Bridging the gap between the digital and the physical: design and evaluation of a mobile augmented reality guide for the museum visit.in Proc. 3rd Int. Conf. on Digital Interactive Media in Entertainment and Arts (DIMEA '08), ACM, New York, NY, USA, pp. 120-127, 2008
  • Tom Dieck, M.C., Jung, T., & Han, D. (2016). Mapping requirements for the wearable smart glasses augmented reality museum application. Journal of Hospitality and Tourism Technology, 7, 3
  • Şasi, A., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar'ülhuffaz (masjid) using an unmanned aerial vehicle. International Journal of Engineering and Geosciences, 3(1), 6-11.
  • Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P., & Mancera-Taboada, J. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, Low-cost tool for archaeological applications. Archaeometry, 57, 128–145.
  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 2013, 38, 421-430.
  • Memduhoglu, A., Şenol, H. İ., Akdağ, S., & Ulukavak, M. (2020). 3D Map Experience for Youth with Virtual/Augmented Reality Applications. Harran Üniversitesi Mühendislik Dergisi, 5(3), 175-182.
  • Polat, N., & Kaya Y. (2021). Investigation of the Performance of Different Pixel-Based Classification Methods in Land Use/Land Cover (LULC) Determination. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 1-6.
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections.Int. J. Comput. Vis. 80, 189–210. http://dx.doi.org/10.1007/s11263-007-0107-3.
  • Vasuki, Y., Holden, E.J., Kovesi, P., & Micklethwaite, S. (2014). Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image analysis approach.Comput. Geosci. 69, 22–32.
  • Alsadik, B., Remondino, F.,Menna F., Gerke, M., & Vosselman, G. (2013). Robust extraction of image correspondences exploiting the image scene geometry and approximate camera orientation. 3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W1
  • Korumaz, A. G., Dülgerler, O. N., & Yakar, M. (2011). Kültürel Mirasın Belgelenmesinde Dijital Yaklaşımlar. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 26(3), 67-83.
  • Korumaz, A. G., Dülgerler, O. N., & Yakar, M. (2011). Kültürel Mirasın Belgelenmesinde Dijital Yaklaşımlar. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 26(3), 67-83.
  • Gomez, Ch., Hayakawa, Y., & Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 2015, 242, 11-20,
  • Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., & Joswig, M. (2011). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
  • Carrivick, J. L., Geilhausen, M., Warburton, J., Dickson, N. E., Carver, S. J., Evans, A.J., & Brown, L.E. ( 2013). Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology, 188, 83-95.
  • Gienko, G.A., & Terry, J. P. (2013). Three-dimensional modeling of coastal boulders using multi-view image measurements. Earth surface processes and Landforms, 39, 853-864.
  • Yakar, M., & Dogan, Y. (2018). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Conference of the Arabian Journal of Geosciences, 73-75.
  • Malpas, J. (2008). Cultural heritage in the age of new media. In New Heritage: New Media and Cultural Heritage; Kalay, Y.E., Kvan, T., Affleck, J., Eds.; Routledge: London, UK, 2008, 13–26
  • Thwaites, H. ( 2013). Digital Heritage: What Happens When We Digitize Everything? In Visual Heritage in the Digital Age; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 327–348.
  • Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1-20.
  • Noh, Z., Sunar, M. S., & Pan, Z. A. (2009). Review on Augmented Reality for Virtual Heritage System. In Learning by Playing. Game-based Education System Design and Development: 4th International Conference on E-Learning and Games, Edutainment 2009, Banff, Canada, 9–11 August 2009; Springer: Berlin, Germany, 2009.
  • Gürel, U. (2021). Artırılmış Gerçeklik Yardımı İle Öğrenme Deneyimi. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(1), 42-45.
  • Uslu, A., & Uysal, M. (2021). Kitle Kaynaklı Fotoğraflar Kullanılarak Kültürel Mirasın Üç Boyutlu Modellenmesi ve Web Tabanlı Görselleştirilmesi: Afrodisias - Tetrapylon Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 632-639.
  • Höllerer, T., & Feiner, S. (2004). Mobile augmented reality. Telegeoinformatics: Location-based computing and services, 21.
  • Yiğit, A. Y., & Uysal, M. (2021). Mobil Arttırılmış gerçeklik uygulaması indirme bağlantısı. https://drive.google.com/file/d/1JonYSYX_MFpd0nM65_-IOFFaaIRYfntG/view?usp=sharing (13.10.2121)
  • Augment. (2021). Augment provides everything you need from 3D content to optimized AR experiences. https://www.augment.com, (14.10.2021)
  • Creed, C., Sivell, J., & Sear, J. (2013). Multi-Touch Tables for Exploring Heritage Content in Public Spaces. In VisualHeritage in the Digital Age; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 67–90.
  • Thwaites, H. (2013). Digital Heritage: What Happens When We Digitize Everything? In Visual Heritage in the DigitalAge; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 327–348.
  • Alptekin, A., & Yakar, M. (2020). Mersin Akyar Falezi’nin 3B modeli. Türkiye Lidar Dergisi, 2 (1), 5-9.
  • Şenol, H. İ., & Kaya, Y. (2019). İnternet Tabanlı Veri Kullanımıyla Yerleşim Alanlarının Modellenmesi: Çiftlikköy Kampüsü Örneği. Türkiye Fotogrametri Dergisi, 1(1), 11-16.
  • Hamal, S. N. G., Sarı, B., & Ulvi, A. (2020). Using of Hybrid Data Acquisition Techniques for Cultural Heritage a Case Study of Pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • Green, D. (2012). Terrains from DEMs: Using Digital Elevation Models

3D Modeling of Historical Artifacts and Visualization by Augmented Reality

Yıl 2021, Cilt: 8 Sayı: 2, 1032 - 1043, 31.12.2021
https://doi.org/10.35193/bseufbd.1011064

Öz

Photogrammetry technique; offers new opportunities in three-dimensional modelling, digital documentation, visualization, creating virtual museums, and simulation. The combination of augmented reality and visualization with a photorealistic three-dimensional model created using this technique has great potential for the interactive presentation of historical artifacts and cultural heritage on virtual platforms. Mobile augmented reality applications, which emerged with the increase in the use of mobile devices, offered users quick and easy visual presentation opportunities. In this study, the interaction of historically important works in mobile augmented reality applications was investigated by using the three-dimensional model produced by the photogrammetry technique, and a sample study was presented. First of all, three-dimensional model production was represented, and then mobile augmented reality work was carried out with two different tools (Unity and Augment). In addition, it was aimed to create virtual, interactive, and immersive new experiences and opportunities in terms of cultural heritage by developing the mobile application of the work itself.

Kaynakça

  • Styliadis, A. D. (2008). Historical photography-based computer-aided architectural design: Demolished buildings information modeling with reverse engineering functionality. Automation in construction, 18(1), 51-69.
  • Ulvi, A. (2021). Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994-2021.
  • Boboc, R. G., Duguleană, M., Voinea, G. D., Postelnicu, C. C., Popovici, D. M., & Carrozzino, M. (2019). Mobile augmented reality for cultural heritage: Following the footsteps of Ovid among different locations in Europe. Sustainability, 11(4), 1167.
  • Remondino, F., & El‐Hakim, S. (2006). Image‐based 3D modelling: a review. The photogrammetric record, 21(115), 269-291.
  • Kasser, M., & Egels, Y. (2002). Digital photogrammetry.
  • Rinaudo, F., Chiabrando, F., Lingua, A., & Spanò, A. (2012). Archaeological site monitoring: UAV photogrammetry can be an answer. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B5), 583-588.
  • Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry. New York, 19.
  • Luhmann, T., Fraser, C., & Maas, H. G. (2016). Sensor modelling and camera calibration for close-range photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 37-46.
  • Bot, J. A., Irschick, D. J., Grayburn, J., Lischer-Katz, Z., Golubiewski-Davis, K., & Ikeshoji-Orlati, V. (2019). Using 3D photogrammetry to create open-access models of live animals: 2D and 3D software solutions. Grayburn et al., eds. D, 3, 54-72.
  • Kraus, K. (2007). Photogrammetry: geometry from images and laser scans. Walter de Gruyter, Berlin. ISBN: 978-3-11-019007-6.
  • Uslu, A., Polat, N., Toprak A. S., & Uysal, M. (2016). Kültürel Mirasın Fotogrametrik Yöntemle 3B Modellenmesi Örneği. Harita Teknolojileri Elektronik Dergisi, 8, 2, 165-176.
  • Uslu, A., & Uysal, M. (2017). Arkeolojik Eserlerin Fotogrametri Yöntemi İle 3 Boyutlu Modellenmesi: Demeter Heykeli Örneği. Geomatik, 2(2), 60-65.
  • Şenol, H., Memduhoglu, A., & Ulukavak, M. (2020). Multi instrumental documentation and 3D modelling of an archaeological site: a case study in Kizilkoyun Necropolis Area. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11 (3), 1241-1250.
  • Zeybek, M., &Kaya, A. (2020). Tarihi Yığma Kiliselerde Hasarların Fotogrametrik Ölçme Tekniğiyle İncelenmesi: Artvin Tibeti Kilisesi Örneği. Geomatik, 5 (1), 47-57.
  • Obradović, M., Vasiljević, I., Đurić, I., Kićanović, J., Stojaković, V., & Obradović, R. (2020). Virtual Reality Models Based on Photogrammetric Surveys—A Case Study of the Iconostasis of the Serbian Orthodox Cathedral Church of Saint Nicholas in Sremski Karlovci (Serbia). Applied Sciences, 10(8), 2743.
  • Marques, L., Tenedório, J. A., Burns, M., Romão, T., Birra, F., Marques, J., & Pires, A.(2017). Cultural Heritage 3D Modelling and visualisation within an Augmented Reality Environment, based on Geographic Information Technologies and mobile platforms. Architecture, City and Environment, 11(33), 117-136.
  • Panou, C., Ragia, L., Dimelli, D., & Mania, K.(2018). An architecture for mobile outdoors augmented reality for cultural heritage. ISPRS International Journal of Geo-Information, 7(12), 463.
  • Carrión-Ruiz, B., Blanco-Pons, S., Weigert, A., Fai, S., & Lerma, J. L. (2019). Merging photogrammetry and augmented reality: The Canadian Library of Parliament. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 367-371.
  • Paladini, A., Dhanda, A., Reina Ortiz, M., Weigert, A., Nofal, E., Min, A., & Santana Quintero, M.(2019). Impact of virtual reality experience on accessibility of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 929-936.
  • Uslu, A., & Uysal, M. (2020). Kültürel Mirasın Etkileşimli Keşfi İçin Mobil Artırılmış Gerçeklik ve Web Tabanlı Görselleştirme Teknolojilerinin Kullanılması: Sfenks Heykeli Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6), 1024-1031.
  • Şenol, H. İ., Ernst, F. B., & Akdağ, S. (2018). Kentsel Dönüşüm Alanlarının Geotasarım Yöntemi ile Planlanması: Eyyübiye Örneği. Harran Üniversitesi Mühendislik Dergisi, 3(3), 63-69.
  • Papagiannakis, G., Gurminder, S., & Nadia, M. T. (2008). A survey of mobile and wireless technologies for augmented reality systems.Comput. Animat. Virtual Worlds, vol. 19(1), 3-22, 2008.
  • Damala, A., Cubaud, P., Bationo, A., Houlier, P., & Marchal, I. (2008). Bridging the gap between the digital and the physical: design and evaluation of a mobile augmented reality guide for the museum visit.in Proc. 3rd Int. Conf. on Digital Interactive Media in Entertainment and Arts (DIMEA '08), ACM, New York, NY, USA, pp. 120-127, 2008
  • Tom Dieck, M.C., Jung, T., & Han, D. (2016). Mapping requirements for the wearable smart glasses augmented reality museum application. Journal of Hospitality and Tourism Technology, 7, 3
  • Şasi, A., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar'ülhuffaz (masjid) using an unmanned aerial vehicle. International Journal of Engineering and Geosciences, 3(1), 6-11.
  • Fernández-Hernandez, J., González-Aguilera, D., Rodríguez-Gonzálvez, P., & Mancera-Taboada, J. (2015). Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: an effective, Low-cost tool for archaeological applications. Archaeometry, 57, 128–145.
  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 2013, 38, 421-430.
  • Memduhoglu, A., Şenol, H. İ., Akdağ, S., & Ulukavak, M. (2020). 3D Map Experience for Youth with Virtual/Augmented Reality Applications. Harran Üniversitesi Mühendislik Dergisi, 5(3), 175-182.
  • Polat, N., & Kaya Y. (2021). Investigation of the Performance of Different Pixel-Based Classification Methods in Land Use/Land Cover (LULC) Determination. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 1-6.
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections.Int. J. Comput. Vis. 80, 189–210. http://dx.doi.org/10.1007/s11263-007-0107-3.
  • Vasuki, Y., Holden, E.J., Kovesi, P., & Micklethwaite, S. (2014). Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image analysis approach.Comput. Geosci. 69, 22–32.
  • Alsadik, B., Remondino, F.,Menna F., Gerke, M., & Vosselman, G. (2013). Robust extraction of image correspondences exploiting the image scene geometry and approximate camera orientation. 3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W1
  • Korumaz, A. G., Dülgerler, O. N., & Yakar, M. (2011). Kültürel Mirasın Belgelenmesinde Dijital Yaklaşımlar. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 26(3), 67-83.
  • Korumaz, A. G., Dülgerler, O. N., & Yakar, M. (2011). Kültürel Mirasın Belgelenmesinde Dijital Yaklaşımlar. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 26(3), 67-83.
  • Gomez, Ch., Hayakawa, Y., & Obanawa, H. (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 2015, 242, 11-20,
  • Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., & Joswig, M. (2011). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2-11.
  • Carrivick, J. L., Geilhausen, M., Warburton, J., Dickson, N. E., Carver, S. J., Evans, A.J., & Brown, L.E. ( 2013). Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology, 188, 83-95.
  • Gienko, G.A., & Terry, J. P. (2013). Three-dimensional modeling of coastal boulders using multi-view image measurements. Earth surface processes and Landforms, 39, 853-864.
  • Yakar, M., & Dogan, Y. (2018). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Conference of the Arabian Journal of Geosciences, 73-75.
  • Malpas, J. (2008). Cultural heritage in the age of new media. In New Heritage: New Media and Cultural Heritage; Kalay, Y.E., Kvan, T., Affleck, J., Eds.; Routledge: London, UK, 2008, 13–26
  • Thwaites, H. ( 2013). Digital Heritage: What Happens When We Digitize Everything? In Visual Heritage in the Digital Age; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 327–348.
  • Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1-20.
  • Noh, Z., Sunar, M. S., & Pan, Z. A. (2009). Review on Augmented Reality for Virtual Heritage System. In Learning by Playing. Game-based Education System Design and Development: 4th International Conference on E-Learning and Games, Edutainment 2009, Banff, Canada, 9–11 August 2009; Springer: Berlin, Germany, 2009.
  • Gürel, U. (2021). Artırılmış Gerçeklik Yardımı İle Öğrenme Deneyimi. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(1), 42-45.
  • Uslu, A., & Uysal, M. (2021). Kitle Kaynaklı Fotoğraflar Kullanılarak Kültürel Mirasın Üç Boyutlu Modellenmesi ve Web Tabanlı Görselleştirilmesi: Afrodisias - Tetrapylon Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 632-639.
  • Höllerer, T., & Feiner, S. (2004). Mobile augmented reality. Telegeoinformatics: Location-based computing and services, 21.
  • Yiğit, A. Y., & Uysal, M. (2021). Mobil Arttırılmış gerçeklik uygulaması indirme bağlantısı. https://drive.google.com/file/d/1JonYSYX_MFpd0nM65_-IOFFaaIRYfntG/view?usp=sharing (13.10.2121)
  • Augment. (2021). Augment provides everything you need from 3D content to optimized AR experiences. https://www.augment.com, (14.10.2021)
  • Creed, C., Sivell, J., & Sear, J. (2013). Multi-Touch Tables for Exploring Heritage Content in Public Spaces. In VisualHeritage in the Digital Age; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 67–90.
  • Thwaites, H. (2013). Digital Heritage: What Happens When We Digitize Everything? In Visual Heritage in the DigitalAge; Ch’ng, E., Gaffney, V., Chapman, H., Eds.; Springer London: London, UK, 327–348.
  • Alptekin, A., & Yakar, M. (2020). Mersin Akyar Falezi’nin 3B modeli. Türkiye Lidar Dergisi, 2 (1), 5-9.
  • Şenol, H. İ., & Kaya, Y. (2019). İnternet Tabanlı Veri Kullanımıyla Yerleşim Alanlarının Modellenmesi: Çiftlikköy Kampüsü Örneği. Türkiye Fotogrametri Dergisi, 1(1), 11-16.
  • Hamal, S. N. G., Sarı, B., & Ulvi, A. (2020). Using of Hybrid Data Acquisition Techniques for Cultural Heritage a Case Study of Pompeiopolis. Türkiye İnsansız Hava Araçları Dergisi, 2(2), 55-60.
  • Green, D. (2012). Terrains from DEMs: Using Digital Elevation Models
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdurahman Yasin Yiğit 0000-0002-9407-8022

Murat Uysal 0000-0001-5202-4387

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 17 Ekim 2021
Kabul Tarihi 10 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

APA Yiğit, A. Y., & Uysal, M. (2021). Tarihi Eserlerin 3B Modellenmesi ve Artırılmış Gerçeklik ile Görselleştirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1032-1043. https://doi.org/10.35193/bseufbd.1011064

Cited By