Araştırma Makalesi
BibTex RIS Kaynak Göster

Maya Hücresini Biyoşablon Olarak Kullanarak Poroz SnO2 Sentezi ve Karakterizasyonu

Yıl 2021, Cilt: 8 Sayı: 2, 808 - 816, 31.12.2021
https://doi.org/10.35193/bseufbd.957503

Öz

Bu çalışmada, poroz ve nanoyapılı SnO2, hidrotermal sentez yöntemiyle biyoşablon kullanılarak sentezlenmiştir. Biyoşablon olarak ekonomik ve kolay bulunan maya hücreleri seçilmiştir. Maya hücrelerinin 3-5 μm çapındaki küreler şeklinde olması üretilen SnO2 yapısının porlu ve yüksek yüzey alanlı olmasını sağlamıştır. Maya hücrelerinin üzerine SnCl2.2H2O başlangıç malzemesi kullanılarak SnO2 yapısının biriktirilmesi işleminden sonra kalsinasyon ile maya hücreleri uzaklaştırılmıştır. Üretilen SnO2’nin kristal yapısı, kristal boyutu, morfoloji ve yüzey alanı çalışmaları yapılmıştır. Böylelikle 20-25 nm kristal boyutuna sahip SnO2tozlar üretilmiştir. 110 m2/gBET yüzey alanona sahip ve yüksek poroziteli yapılan elde edilmiştir.

Destekleyen Kurum

Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2018-01.BŞEÜ.03-05

Teşekkür

Yazarlar bu çalışma için Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne 2018-01.BŞEÜ.03-05 nolu proje desteği için teşekkür eder. Ayrıca bu çalışmada TÜBİTAK 116M997 nolu projesi kapsamında alınan cihazlar kullanıldığı için yazarlar TÜBİTAK’a da teşekkür eder.

Kaynakça

  • Alaf, M., Gultekin, D., & Akbulut, H. (2014). Microelectronic Engineering Double phase tinoxide / tin / MWCNT nanocomposite negative electrodes for lithium microbatteries, Microelectron. Eng. 126, 143–147.
  • Naghadeh, S. B., Vahdatifar, S., Mortazavi, Y., Khodadadi, A. A., & Abbasi, A. (2016). Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures, Sensors Actuators, B Chem. 223, 252–260.
  • Kashyap, D., Teller, H., & Schechter, A. (2018). Highly active PtxPdy/SnO2/C catalyst for dimethyl ether oxidation in fuel cells, J. Power Sources. 396, 335–344.
  • Wali, Q., Fakharuddin, A., & Jose R. (2015). Tin oxide as a photoanode for dye-sensitised solar cells: Current progress and future challenges, J. Power Sources. 293, 1039–1052.
  • Alaf, M. & Akbulut, H. (2014). Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries, J. Power Sources. 247, 692–702.
  • Alaf, M., Gultekin, & D., Akbulut, H. (2013). Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries, in: Appl. Surf. Sci. 244–251.
  • Alaf, M., Tocoglu, U., Kayis, F., & Akbulut H. (2016). Sn/SnO2/Mwcnt composite anode and electrochemical impedance spectroscopy studies for Li-ion batteries, Fullerenes Nanotub. Carbon Nanostructures. 24.
  • Aydin, M., Demir, E., Unal, B., Dursun, B., Ahsen, A. S., & Demir-Cakan R. (2019). Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries, Solid State Ionics. 341, 115035.
  • Xiang, Y., Wang, Z., Qiu, W., Guo, Z., Liu, D., Qu, D., Xie, Z., Tang H., & Li, J. (2018). Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery, J. Memb. Sci. 563, 380–387.
  • Sun, J., Guo, J., Qi, B., & Liu, T. (2020) Comparisons of SnO2 gas sensor degradation under elevated storage and working conditions, Microelectron. Reliab. 114, 113808.
  • Bunpang, K., Wisitsoraat, A., Tuantranont, A., Singkammo, S., Phanichphant, S., & Liewhiran C. (2019). Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films, Sensors Actuators, B Chem. 291, 177–191.
  • Bahrami, B., Khodadadi, A., Kazemeini, M., & Mortazavi Y. (2008). Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane, Sensors Actuators, B Chem. 133, 352–356.
  • Wang, B. J., & Ma S. Y. (2020). High response ethanol gas sensor based on orthorhombic and tetragonal SnO2, Vacuum. 177, 109428.
  • Myadam, N. L., Nadargi, D. Y., Gurav Nadargi, J. D., Shaikh, F. I., Suryavanshi, S. S., & Chaskar M. G. (2020). A facile approach of developing Al/SnO2 xerogels via epoxide assisted gelation: A highly versatile route for formaldehyde gas sensors, Inorg. Chem. Commun. 116, 107901.
  • Ma, X., Qin, Q., Zhang, N., Chen, C., Liu, X., Chen, Y., Li, C., & Ruan S. (2017). Synthesis of SnO2 nano-dodecahedrons with high-energy facets and their sensing properties to SO2 at low temperature, J. Alloys Compd. 723, 595–601.
  • Zhang, M., Zhen, Y., Sun, F., & Xu C. (2016). Hydrothermally synthesized SnO2-graphene composites for H2 sensing at low operating temperature, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 209, 37–44.
  • Mehdinia, A., Ziaei, E., & Jabbari A. (2014). Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation, Int. J. Hydrogen Energy. 39, 10724–10730.
  • Kheradmandinia, S., Khandan, N., & Eikani, M. H. (2016). Synthesis and evaluation of CO electro-oxidation activity of carbon supported SnO2, CoO and Ni nano catalysts for a PEM fuel cell anode, Int. J. Hydrogen Energy. 41, 19070–19080.
  • Kesava, M., & Dinakaran K. (2021). SnO2 nanoparticles dispersed carboxylated Poly(arylene ether sulfones) nanocomposites for proton exchange membrane fuel cell (PEMFC) applications, Int. J. Hydrogen Energy. 46, 1121–1132.
  • Qureshi, A. A., Javed, S., Javed, H. M. A., Akram, A., Mustafa, M. S., Ali, U., & Nisar, M.Z. (2021). Facile formation of SnO2–TiO2 based photoanode and Fe3O4@rGO based counter electrode for efficient dye-sensitized solar cells, Mater. Sci. Semicond. Process. 123, 105545.
  • Gultekin, D., Alaf, M., Guler, M. O., & Akbulut H. (2012). Synthesis of ZnO, SnO2 Nanoparticles and Preparation of ZnOSnO2 Nanocomposites, J. Nanosci. Nanotechnol. 12, 9175–9182.
  • Kumar, R., Umar, A., Kumar, R., Chauhan, M. S., & Al-Hadeethi, Y. (2020). ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications, Ceram. Int. 47, 6201–6210.
  • Yuan, Z., Zuo, K., Meng, F., Ma Z., Xu, W., & Dong H. (2020). Microscale analysis and gas sensing characteristics based on SnO2 hollow spheres, Microelectron. Eng. 231, 111372.
  • Dai, W., Chen, Y., Tian Q., Xiang, Y., & Sui Z. (2020). Chamber-confined effect of SnO2 nanorods encapsulated within a porous capsule-like carbon enables high lithium storage, J. Electroanal. Chem. 873, 114408.
  • Alaf, M., Guler, M. O., Gultekin, D., Uysal, M., Alp, A., & Akbulut H. (2008). Effect of oxygen partial pressure on the microstructural and physical properties on nanocrystalline tin oxide films grown by plasma oxidation after thermal deposition from pure Sn targets, Vacuum. 83, 292–301.
  • Gultekin, D., Alaf, M., & Akbulut H. (2013). Synthesis and characterization of zno nanopowders and zno-cnt nanocomposites prepared by chemical precipitation route, Acta Phys. Pol. A. 123
  • Li, G., Zhang, X., & Kawi, S., (1999). Relationships between sensitivity, catalytic activity, and surface areas of SnO gas sensors, Sensors Actuators, B Chem. 64–70
  • Kang, K., & Kim S.W. (2011). Bio-Inspired Synthesis of Electrode Materials for Lithium Rechargeable Batteries, Energy Storage Emerg. Era Smart Grids.
  • Wang, C., Jiao, K., Yan, J., Wan, M., Wan, Q., Breschi, L., Chen, J., Tay, F. R., & Niu, L. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials, Prog. Mater. Sci. 116, 100712.
  • Krajina, B. A., Proctor, A. C., Schoen, A. P., Spakowitz, A. J., & Heilshorn S. C. (2018). Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature, Prog. Mater. Sci. 91, 1–23.
  • Xu, G., Zhang, X., Cui, H., Zhang, Z., Ding, J., & Wu, J. (2016). Facile synthesis of mesoporous SnO2 microspheres using bioactive yeast cell, Powder Technol. 301, 96–101.
  • Xu, G., Zhang, X., Cui, H., Cheng, W., Zhang, Z., Ding, J., Zhan, X., & Wu, J. (2016). Facile fabrication of hierarchical structure SnO2 coatings using bioactive yeast cell, Mater. Lett. 172, 137–141.
  • Pomerantseva, E., Gerasopoulos, K., Chen, X., Rubloff, G., & Ghodssi R., (2012). Electrochemical performance of the nanostructured biotemplated V2O5cathode for lithium-ion batteries, J. Power Sources. 206, 282–287.
  • Wang, J., Liu, W., Chen, J., Wang, H., Liu, S. & Chen, S. (2016). Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys, Electrochim. Acta. 188, 210–217. https://doi.org/10.1016/j.electacta.2015.11.128.
  • Xia, Y., Zhang, W., Xiao, Z., Huang, H., Zeng, H., Chen, X., Chen, F., Gan, Y., & Tao, X. (2012). Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries, J. Mater. Chem. 22, 9209. https://doi.org/10.1039/c2jm16935e.
  • Zhang, X., Xu, G., Chen, Z., Cui, H., Zhang, Z., & Zhan, X. (2017). Solvothermal preparation and gas sensing properties of hierarchical pore structure SnO2 produced using grapefruit peel as a bio-template, Ceram. Int. 43, 4112–4118. https://doi.org/10.1016/j.ceramint.2016.12.015.
  • Pan, D., Ge, S., Zhang, X., Mai, X., Li, S., & Guo Z., (2018). Synthesis and photoelectrocatalytic activity of In 2 O 3 hollow microspheres via a bio-template route using yeast templates, Dalt. Trans. 47, 708–715.
  • Kim, S. P., Choi, M. Y., & Choi H. C., (2016). Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull. 74, 85–89.
  • Alaf, M. (2014). Lityum iyon piller için Sn/SnO2/KNT kompozit anotlarının geliştirilmesi, Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya

Porous SnO2 Synthesis and Characterization Using Yeast Cell as a Biotemplate

Yıl 2021, Cilt: 8 Sayı: 2, 808 - 816, 31.12.2021
https://doi.org/10.35193/bseufbd.957503

Öz

In this study, porous and nanostructured SnO2 were synthesized by hydrothermal synthesis method using a biotemplate. Low-cost yeast cells were chosen as the biotemplate. The yeast cells were in the form of spheres with a diameter of 3-5 μm ensured that the produced SnO2 structure was porous and high surface area. SnO2 was deposited on the surface of yeast cell with using SnCl2.2H2O as a precursor and then particles were calcined to remove yeast cells. The crystal structure, crystallites size, morphology, and surface area of the produced SnO2 were studied. Hereby, SnO2 powders with a crystal size of 20-25 nm were produced. High porosity structures with 110 m2/g BET surface area were obtained.

Proje Numarası

2018-01.BŞEÜ.03-05

Kaynakça

  • Alaf, M., Gultekin, D., & Akbulut, H. (2014). Microelectronic Engineering Double phase tinoxide / tin / MWCNT nanocomposite negative electrodes for lithium microbatteries, Microelectron. Eng. 126, 143–147.
  • Naghadeh, S. B., Vahdatifar, S., Mortazavi, Y., Khodadadi, A. A., & Abbasi, A. (2016). Functionalized MWCNTs effects on dramatic enhancement of MWCNTs/SnO2 nanocomposite gas sensing properties at low temperatures, Sensors Actuators, B Chem. 223, 252–260.
  • Kashyap, D., Teller, H., & Schechter, A. (2018). Highly active PtxPdy/SnO2/C catalyst for dimethyl ether oxidation in fuel cells, J. Power Sources. 396, 335–344.
  • Wali, Q., Fakharuddin, A., & Jose R. (2015). Tin oxide as a photoanode for dye-sensitised solar cells: Current progress and future challenges, J. Power Sources. 293, 1039–1052.
  • Alaf, M. & Akbulut, H. (2014). Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries, J. Power Sources. 247, 692–702.
  • Alaf, M., Gultekin, & D., Akbulut, H. (2013). Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries, in: Appl. Surf. Sci. 244–251.
  • Alaf, M., Tocoglu, U., Kayis, F., & Akbulut H. (2016). Sn/SnO2/Mwcnt composite anode and electrochemical impedance spectroscopy studies for Li-ion batteries, Fullerenes Nanotub. Carbon Nanostructures. 24.
  • Aydin, M., Demir, E., Unal, B., Dursun, B., Ahsen, A. S., & Demir-Cakan R. (2019). Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries, Solid State Ionics. 341, 115035.
  • Xiang, Y., Wang, Z., Qiu, W., Guo, Z., Liu, D., Qu, D., Xie, Z., Tang H., & Li, J. (2018). Interfacing soluble polysulfides with a SnO2 functionalized separator: An efficient approach for improving performance of Li-S battery, J. Memb. Sci. 563, 380–387.
  • Sun, J., Guo, J., Qi, B., & Liu, T. (2020) Comparisons of SnO2 gas sensor degradation under elevated storage and working conditions, Microelectron. Reliab. 114, 113808.
  • Bunpang, K., Wisitsoraat, A., Tuantranont, A., Singkammo, S., Phanichphant, S., & Liewhiran C. (2019). Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films, Sensors Actuators, B Chem. 291, 177–191.
  • Bahrami, B., Khodadadi, A., Kazemeini, M., & Mortazavi Y. (2008). Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane, Sensors Actuators, B Chem. 133, 352–356.
  • Wang, B. J., & Ma S. Y. (2020). High response ethanol gas sensor based on orthorhombic and tetragonal SnO2, Vacuum. 177, 109428.
  • Myadam, N. L., Nadargi, D. Y., Gurav Nadargi, J. D., Shaikh, F. I., Suryavanshi, S. S., & Chaskar M. G. (2020). A facile approach of developing Al/SnO2 xerogels via epoxide assisted gelation: A highly versatile route for formaldehyde gas sensors, Inorg. Chem. Commun. 116, 107901.
  • Ma, X., Qin, Q., Zhang, N., Chen, C., Liu, X., Chen, Y., Li, C., & Ruan S. (2017). Synthesis of SnO2 nano-dodecahedrons with high-energy facets and their sensing properties to SO2 at low temperature, J. Alloys Compd. 723, 595–601.
  • Zhang, M., Zhen, Y., Sun, F., & Xu C. (2016). Hydrothermally synthesized SnO2-graphene composites for H2 sensing at low operating temperature, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 209, 37–44.
  • Mehdinia, A., Ziaei, E., & Jabbari A. (2014). Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation, Int. J. Hydrogen Energy. 39, 10724–10730.
  • Kheradmandinia, S., Khandan, N., & Eikani, M. H. (2016). Synthesis and evaluation of CO electro-oxidation activity of carbon supported SnO2, CoO and Ni nano catalysts for a PEM fuel cell anode, Int. J. Hydrogen Energy. 41, 19070–19080.
  • Kesava, M., & Dinakaran K. (2021). SnO2 nanoparticles dispersed carboxylated Poly(arylene ether sulfones) nanocomposites for proton exchange membrane fuel cell (PEMFC) applications, Int. J. Hydrogen Energy. 46, 1121–1132.
  • Qureshi, A. A., Javed, S., Javed, H. M. A., Akram, A., Mustafa, M. S., Ali, U., & Nisar, M.Z. (2021). Facile formation of SnO2–TiO2 based photoanode and Fe3O4@rGO based counter electrode for efficient dye-sensitized solar cells, Mater. Sci. Semicond. Process. 123, 105545.
  • Gultekin, D., Alaf, M., Guler, M. O., & Akbulut H. (2012). Synthesis of ZnO, SnO2 Nanoparticles and Preparation of ZnOSnO2 Nanocomposites, J. Nanosci. Nanotechnol. 12, 9175–9182.
  • Kumar, R., Umar, A., Kumar, R., Chauhan, M. S., & Al-Hadeethi, Y. (2020). ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications, Ceram. Int. 47, 6201–6210.
  • Yuan, Z., Zuo, K., Meng, F., Ma Z., Xu, W., & Dong H. (2020). Microscale analysis and gas sensing characteristics based on SnO2 hollow spheres, Microelectron. Eng. 231, 111372.
  • Dai, W., Chen, Y., Tian Q., Xiang, Y., & Sui Z. (2020). Chamber-confined effect of SnO2 nanorods encapsulated within a porous capsule-like carbon enables high lithium storage, J. Electroanal. Chem. 873, 114408.
  • Alaf, M., Guler, M. O., Gultekin, D., Uysal, M., Alp, A., & Akbulut H. (2008). Effect of oxygen partial pressure on the microstructural and physical properties on nanocrystalline tin oxide films grown by plasma oxidation after thermal deposition from pure Sn targets, Vacuum. 83, 292–301.
  • Gultekin, D., Alaf, M., & Akbulut H. (2013). Synthesis and characterization of zno nanopowders and zno-cnt nanocomposites prepared by chemical precipitation route, Acta Phys. Pol. A. 123
  • Li, G., Zhang, X., & Kawi, S., (1999). Relationships between sensitivity, catalytic activity, and surface areas of SnO gas sensors, Sensors Actuators, B Chem. 64–70
  • Kang, K., & Kim S.W. (2011). Bio-Inspired Synthesis of Electrode Materials for Lithium Rechargeable Batteries, Energy Storage Emerg. Era Smart Grids.
  • Wang, C., Jiao, K., Yan, J., Wan, M., Wan, Q., Breschi, L., Chen, J., Tay, F. R., & Niu, L. (2021). Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials, Prog. Mater. Sci. 116, 100712.
  • Krajina, B. A., Proctor, A. C., Schoen, A. P., Spakowitz, A. J., & Heilshorn S. C. (2018). Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature, Prog. Mater. Sci. 91, 1–23.
  • Xu, G., Zhang, X., Cui, H., Zhang, Z., Ding, J., & Wu, J. (2016). Facile synthesis of mesoporous SnO2 microspheres using bioactive yeast cell, Powder Technol. 301, 96–101.
  • Xu, G., Zhang, X., Cui, H., Cheng, W., Zhang, Z., Ding, J., Zhan, X., & Wu, J. (2016). Facile fabrication of hierarchical structure SnO2 coatings using bioactive yeast cell, Mater. Lett. 172, 137–141.
  • Pomerantseva, E., Gerasopoulos, K., Chen, X., Rubloff, G., & Ghodssi R., (2012). Electrochemical performance of the nanostructured biotemplated V2O5cathode for lithium-ion batteries, J. Power Sources. 206, 282–287.
  • Wang, J., Liu, W., Chen, J., Wang, H., Liu, S. & Chen, S. (2016). Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys, Electrochim. Acta. 188, 210–217. https://doi.org/10.1016/j.electacta.2015.11.128.
  • Xia, Y., Zhang, W., Xiao, Z., Huang, H., Zeng, H., Chen, X., Chen, F., Gan, Y., & Tao, X. (2012). Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries, J. Mater. Chem. 22, 9209. https://doi.org/10.1039/c2jm16935e.
  • Zhang, X., Xu, G., Chen, Z., Cui, H., Zhang, Z., & Zhan, X. (2017). Solvothermal preparation and gas sensing properties of hierarchical pore structure SnO2 produced using grapefruit peel as a bio-template, Ceram. Int. 43, 4112–4118. https://doi.org/10.1016/j.ceramint.2016.12.015.
  • Pan, D., Ge, S., Zhang, X., Mai, X., Li, S., & Guo Z., (2018). Synthesis and photoelectrocatalytic activity of In 2 O 3 hollow microspheres via a bio-template route using yeast templates, Dalt. Trans. 47, 708–715.
  • Kim, S. P., Choi, M. Y., & Choi H. C., (2016). Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull. 74, 85–89.
  • Alaf, M. (2014). Lityum iyon piller için Sn/SnO2/KNT kompozit anotlarının geliştirilmesi, Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Sakarya
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Miraç Alaf 0000-0002-4807-3909

Gözde Çağlar Bu kişi benim 0000-0002-2939-095X

Sema Leblebici 0000-0002-3762-6408

Proje Numarası 2018-01.BŞEÜ.03-05
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 7 Temmuz 2021
Kabul Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

APA Alaf, M., Çağlar, G., & Leblebici, S. (2021). Maya Hücresini Biyoşablon Olarak Kullanarak Poroz SnO2 Sentezi ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 808-816. https://doi.org/10.35193/bseufbd.957503