Araştırma Makalesi
BibTex RIS Kaynak Göster

İkizkenar Üçgensel Sayılar Üzerindeki Grupoid ve Yarıgrup Yapıları

Yıl 2024, Cilt: 11 Sayı: 2, 325 - 334, 29.11.2024
https://doi.org/10.35193/bseufbd.1313160

Öz

Figüratif sayılar hakkında temel bilgiler verilmektedir. Daha sonra iki boyutlu figüratif sayılardan biri olan ikizkenar üçgen sayıları hakkında bilgi verilmiştir. Ayrıca cebirsel yapılar ve tanımları hakkında bilgi içerir. Ek olarak k -ikizkenar üçgensel sayıları içeren bir ikili işlem sunulmuş ve bu ikili işlem ile tanımlanan yapıların bir grupoid veya yarı grup oluşturup oluşturmadığı araştırılmıştır. Ayrıca, makalenin sonunda sonuçları sağlayan iki adet örnek verilmiştir.

Kaynakça

  • Deza, E., & Deza, M. M., (2012). Figurate Numbers, World Scientific Publishing Co. Pte. Ltd., Singapore.
  • Jitman, S., Awachai, K., & Tanla, P., (2017). Isosceles Triangular Numbers, Mathematical Journal-Math, 62(692), 39-49.
  • Jitman, S. & Punpim, J., (2021). Characterizations And Identities For Isosceles Triangular Numbers, European Journal of Pure and Applied Mathematics, 14(2), 380-395.
  • Sparavigna, A. C., (2019). Groupoids of OEIS A003154 Numbers (Star Numbers or Centered Dodecagonal Numbers), Zenodo.
  • Sparavigna, A. C., (2019). Groupoids of OEIS A093112 and A093069 Numbers (oblong and odd square numbers), Zenodo.
  • Emin, A., (2021). Semigroup Construction on Polygonal Numbers, Journal of Engineering Technology and Applied Sciences, 6(3), 143-153.
  • Emin, A., (2022). Some Algebraic Structure on Figurate Numbers, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(2), 604-612.
  • Rosenfeld, A., (1968). An Introduction to Algebraic Structures. New York: Holden-Day.

Groupoid and Semigroup Construction on Isosceles Triangular Numbers

Yıl 2024, Cilt: 11 Sayı: 2, 325 - 334, 29.11.2024
https://doi.org/10.35193/bseufbd.1313160

Öz

Basic information about figurative numbers is provided. Then, information about isosceles triangular numbers, one of the two-dimensional figurative numbers, is given. It also includes information about algebraic structures and their definitions. Additionally, a binary operation that includes k -isosceles triangular numbers is presented, and the study investigates whether the algebraic structures defined with this operation form a groupoid or semigroup. Also, two examples are given that satisfy the results at the end of the paper.

Kaynakça

  • Deza, E., & Deza, M. M., (2012). Figurate Numbers, World Scientific Publishing Co. Pte. Ltd., Singapore.
  • Jitman, S., Awachai, K., & Tanla, P., (2017). Isosceles Triangular Numbers, Mathematical Journal-Math, 62(692), 39-49.
  • Jitman, S. & Punpim, J., (2021). Characterizations And Identities For Isosceles Triangular Numbers, European Journal of Pure and Applied Mathematics, 14(2), 380-395.
  • Sparavigna, A. C., (2019). Groupoids of OEIS A003154 Numbers (Star Numbers or Centered Dodecagonal Numbers), Zenodo.
  • Sparavigna, A. C., (2019). Groupoids of OEIS A093112 and A093069 Numbers (oblong and odd square numbers), Zenodo.
  • Emin, A., (2021). Semigroup Construction on Polygonal Numbers, Journal of Engineering Technology and Applied Sciences, 6(3), 143-153.
  • Emin, A., (2022). Some Algebraic Structure on Figurate Numbers, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 11(2), 604-612.
  • Rosenfeld, A., (1968). An Introduction to Algebraic Structures. New York: Holden-Day.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Grup Teorisi ve Genellemeler
Bölüm Makaleler
Yazarlar

Ahmet Emin 0000-0001-7791-7181

Ümit Sarp 0000-0002-1260-785X

Yayımlanma Tarihi 29 Kasım 2024
Gönderilme Tarihi 12 Haziran 2023
Kabul Tarihi 26 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

APA Emin, A., & Sarp, Ü. (2024). Groupoid and Semigroup Construction on Isosceles Triangular Numbers. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(2), 325-334. https://doi.org/10.35193/bseufbd.1313160