Araştırma Makalesi
BibTex RIS Kaynak Göster

PLC-SCADA Denetimli Bağımsız Güneş Takip Sistemlerinin Gerçek Zamanlı Kontrolü ve Performans Analizi

Yıl 2025, Cilt: 12 Sayı: 1, 108 - 136, 30.05.2025
https://doi.org/10.35193/bseufbd.1463785

Öz

Bu makalede, PLC (Programlanabilir Mantıksal Denetleyici) ve SCADA (Yönetimsel Denetim ve Veri Toplama) kullanılarak tek eksenli ve çift eksenli güneş takip sistemlerinin gerçek zamanlı kontrolü ve sabit bir güneş paneli sisteminin izlenmesi sunulmaktadır. Sistemler, yeni bir takip mekanizması ve yeni bir enerji üretimi değerlendirme yöntemi kullanılarak tasarlanmıştır. Bu üç güneş paneli sistemi verimliliklerine ve ürettikleri güce göre karşılaştırılmıştır. Her üç sistemde de 100 Wp gücünde özdeş güneş panelleri kullanılmıştır. Hem tek eksenli hem de çift eksenli güneş panelini etkili bir şekilde kontrol etmek için S7-1200 tip bir PLC kullanılmıştır. PV panellerinin eksen açısını kontrol etmek için gerçek zamanlı saat ve astronomik veriler kullanılmıştır. Sistem, PLC-SCADA yazılımının uygulanması yoluyla gerçek zamanlı olarak kapsamlı bir şekilde izlenmiş ve kontrol edilmiştir. Elde edilen veriler kaydedilerek SCADA ekranında görüntülenmiş ve daha sonra değişen iklim koşulları altında üç panelin güç çıkışını belirlemek için analiz edilmiştir. Elde edilen sonuçların değerlendirmesi buna göre yapılmıştır. 42 gün güneşli, 11 gün bulutlu ve 8 gün yağmurlu olmak üzere toplam 61 günlük dönemde, çift eksenli fotovoltaik panel ortalama 337,34 Wh, tek eksenli fotovoltaik panel 314,32 Wh ve sabit fotovoltaik panel 220,49 Wh üretmiştir. Günlük ortalamada, çift eksenli fotovoltaik panel tek eksenli fotovoltaik panele göre %7,32 ve sabit fotovoltaik panele göre %52,99 daha fazla enerji üretirken, tek eksenli fotovoltaik panel sabit fotovoltaik panele göre %42,55 daha fazla enerji üretmiştir.

Etik Beyan

Etik Kurul Kararı gerektirecek bir durum yoktur.

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

FYL-2020-191.

Teşekkür

This work was supported by Coordinatorship of Research Projects of the Karabuk University. Project Number: FYL-2020-191.

Kaynakça

  • World Energy Data. (2022). Trends of Eneygy Production. https://www.worldenergydata.org/world-electricity-generation/
  • Republic of Türkiye Energy Market Regulatory Authority. (2024). Electricity Market Sector Report March 2024. https://epdk.gov.tr
  • Ocłon, P., Cisek, P., Kozak-Jagieła, E., Taler, J., Taler, D., Skrzyniowska, D., &Fedorczak- Cisak, M. (2020). Modeling and experimental validation and thermal performance assessment of a sun-tracked and cooled PVT system under low solar irradiation. Energy Conversion Management,222, (113289), 1-23.
  • Jamroen, C., Fongkerd, C., Krongpha, W., Komkum, P., Pirayawaraporn, A., & Chindakham, N. (2021). A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 299, (117295), 1-17.
  • Hafez, A., Yousef, A., & Harag, N. (2018). Solar tracking systems: technologies and trackers drive types – a review. Renewable and Sustainable Energy Reviews, 91, 754–782.
  • Al-Rousan, N., Mat Isa, N.A., & Mat Desa, M.K. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews, 82, 2548–2569.
  • Awasthi, A., Shukla, A. K., Murali Manohar, S. R., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392–405.
  • Seme, S., Stumberger, B., Hadziselimovic M., & Sredensek, K. (2020). Solar photovoltaic tracking systems for electricity generation: A review. Energies, 13, (4224), 1-24.
  • Sumathi, V., Jayapragash, R., Bakshi, A., & Akella, P. K. (2017). Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade. Renewable and Sustainable Energy Reviews, 74, 130-138.
  • Nsengiyumva, W., Chen, S. G., Hu L., & Chen X. (2018). Recent advancements and challenges in solar tracking systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250–279.
  • Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., & Unkat, S. (2020). A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 37, (100618), 1-14.
  • Ali Jallal, M., Chabaa, S., & Zeroual, A. (2020). A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers. Renewable Energy, 149, 1182–1196.
  • Zhu, Y., Liu, J., & Yang, X. (2020). Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy, 264, (114647), 1-7.
  • Al-Rousan, N., Mat Isa, N. A., & Mat Desa, M. K. (2020). Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system. Journal of King Saud University - Engineering Sciences, 32, (7), 459–469.
  • Lim, B. H., Lim, C. S., Li, H., Hu, X. L., Chong, K. K., Zong, J. L., Kang, K., & Tan, W. C. (2020). Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures. Solar Energy, 199, 596–616.
  • Okoye, C. O., Bahrami, A., & Atikol, U. (2018). Evaluating the solar resource potential on different tracking surfaces in Nigeria. Renewable and Sustainable Energy Reviews, 81, 1569–1581.
  • Jacobson, M. Z., & Jadhav, V. (2018). World estimates of pv optimal tilt angles and ratios of sunlight incident upon tilted and tracked pv panels relative to horizontal panels. Solar Energy,169, 55–66.
  • Yilmaz, S, Ozcalik, H. R., Dogmus, O., Dincer F., Akgol O., & Karaaslan M. (2015). Design of two axes sun tracking controller with analytically Solar radiation calculations. Renewable and Sustainable Energy Reviews, 43, 997–1005.
  • Martín-Martínez S., Cañas-Carretõn M., Honrubia-Escribano A., & Gõmez-Lázaro E. (2019). Performance evaluation of large solar photovoltaic power plants in spain. Energy Conversion and Management, 183, 515–528.
  • Bahrami, A., & Okoye, C. O. (2018). The performance and ranking pattern of pv systems incorporated with solar trackers in the northern hemisphere. Renewable and Sustainable Energy Reviews, 97, 138–151.
  • Bahrami A., Okoye C.O., & Atikol U. (2017). Technical and economic assessment of fixed, single and dual-axis tracking pv panels in low latitude countries. Renewable Energy, 113, 563–579.
  • Antonanzas, J., Urraca, R., Martinez-de Pison, F. J., & Antonanzas F. (2018). Optimal solar tracking strategy to increase irradiance in the plane of array under cloudy conditions: A study across Europe. Solar Energy, 163, 122-130.
  • Fernández-Ahumada L. M., Casares F. J., Ramírez-Faz J., & Lõpez-Luque R. (2017). Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy,150, 20-29.
  • Barker, L., Neber, M., & Lee, H., (2013). Design of a low-profile two-axis solar tracker. Solar Energy, 97, 569–576.
  • Eke, R., Senturk, A., 2012., “Performance comparison of a double-axis sun tracking versus fixed PV system”, Sol. Energy 86 (9), 2665–2672.
  • Roth, P., Georgiev, A., & Boudinov, H., (2005). Cheap two axis sun following device”, Energy Conversion Management, 46, 1179–1192.
  • Roth, P., Georgiev, A., & Boudinov, H. (2004). Design and construction of a system for suntracking. Renewable Energy, 29, 393-402.
  • Batayneh W., Owais A., & Nairoukh M. (2013). An intelligent fuzzy based tracking controller for a dual-axis solar PV system. Automation in Construction, 29, 100-106.
  • Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable Energy, 29, 1265-1275.
  • Abdallah, K., & Nijmeh S. (2004). Two axes sun tracking system with PLC control. Energy Conversion and Management, 45, (11-12), 1931-1939.
  • Masoumeh, A., Golzarian, M. R., Rohani A., & Zarchi, H. A. (2018). Development of a machine vision dual-axis solar tracking system. Solar Energy, 169, 136–143.
  • Fernandez-Ahumada, L.M., Casares, F.J., Ramírez-Faz, J., & Lopez-Luque, R. (2017). Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy, 150, 20-29.
  • Evseev, E.G., & Kudish, A.I. (2009). The assessment of different models to predict the global solar radiation on a surface tilted to the south. Solar Energy, 83, 377-388.
  • Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia K., & Sharifi A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewabable and Sustainable. Energy Reviews, 13, (8), 1800-1818.
  • Lu, H.C., & Shih, T. L. (2010). Fuzzy system control design with application to solar panel active dual-axis Sun tracker system. Proceeding of the IEEE International Conference on Systems Man and Cybernetics (SMC), 10-13 October, İstanbul, 1878-1883.
  • Rahate, A,, Seung, J., Mehmood, M. U., Kim, Y., Jeon, G., Han, H. J., & Lim, S. H. (2021). Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - Daylighting application. Solar Energy, 224, 175-183.
  • Wu, C. H., Wang, H. C, & Chang, H. Y. (2022). Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development, 66, 308–318.
  • Asfaw, A. H. (2023). Manual tracking for solar parabolic concentrator –For the case of solar injera baking, Ethiopia. Heliyon, 9, (1), 1-17.
  • Messenger, R. A., & Ventre, J. (2003). Photovoltaic systems engineering 2nd ed. CRC Press, Boca Raton, U.S.A., 437.
  • Ghassoul, M. (2021). A dual solar tracking system based on a light to frequency converter using a microcontroller. Fuel. Communications 6 (2021) 100007.
  • Karafil, A., Ozbay, H., Kesler, M., & Parmaksiz, H. (2015). Calculation of optimum fixed tilt angle of PV panels depending on solar angles and comparison of the results with experimental study conducted in summer in Bilecik, Turkey. 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 26-28 November, Bursa, 971-976.

Real-Time Control and Performance Analysis of PLC-SCADA Supervised Stand-Alone Solar Tracking Systems

Yıl 2025, Cilt: 12 Sayı: 1, 108 - 136, 30.05.2025
https://doi.org/10.35193/bseufbd.1463785

Öz

This paper presents the real-time control of single-axis and dual-axis solar tracking systems, as well as monitoring of a fixed solar panel system, using PLC (Programmable Logic Controller) and SCADA (Supervisory Control and Data Acquisition). The systems were designed using a novel tracking mechanism and a novel energy generation evaluation method. Based on their efficiencies as well as the power they produced, these three solar panel systems were compared accordingly. In all three systems, identical solar panels having 100 Wp power were used. To control both single-axis and dual-axis solar panels efficiently, an S7-1200 type PLC was employed. Real-time clock and astronomical data were used to control the axis angle of the PV panels. The system was comprehensively monitored and controlled in real-time through the implementation of PLC-SCADA software. The obtained data were recorded and displayed on SCADA screen, and were subsequently analyzed to determine the power output of the three panels under varying climatic conditions. The evaluation of the obtained results was made accordingly. In a total of 61-day period which encompassed 42 days of sunshine, 11 days of cloud and 8 days of rain, double-axis photovoltaic panel produced 337.34 Wh, single-axis photovoltaic panel generated 314.32 Wh and fixed photovoltaic panel produced 220.49 Wh on average. On daily average, double-axis photovoltaic panel produced 7.32% more energy as compared to single-axis photovoltaic panel and 52.99% more energy as compared to fixed photovoltaic panel, whereas single-axis photovoltaic panel produced 42.55% more energy than fixed photovoltaic panel.

Proje Numarası

FYL-2020-191.

Kaynakça

  • World Energy Data. (2022). Trends of Eneygy Production. https://www.worldenergydata.org/world-electricity-generation/
  • Republic of Türkiye Energy Market Regulatory Authority. (2024). Electricity Market Sector Report March 2024. https://epdk.gov.tr
  • Ocłon, P., Cisek, P., Kozak-Jagieła, E., Taler, J., Taler, D., Skrzyniowska, D., &Fedorczak- Cisak, M. (2020). Modeling and experimental validation and thermal performance assessment of a sun-tracked and cooled PVT system under low solar irradiation. Energy Conversion Management,222, (113289), 1-23.
  • Jamroen, C., Fongkerd, C., Krongpha, W., Komkum, P., Pirayawaraporn, A., & Chindakham, N. (2021). A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 299, (117295), 1-17.
  • Hafez, A., Yousef, A., & Harag, N. (2018). Solar tracking systems: technologies and trackers drive types – a review. Renewable and Sustainable Energy Reviews, 91, 754–782.
  • Al-Rousan, N., Mat Isa, N.A., & Mat Desa, M.K. (2018). Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews, 82, 2548–2569.
  • Awasthi, A., Shukla, A. K., Murali Manohar, S. R., Dondariya, C., Shukla, K. N., Porwal, D., & Richhariya, G. (2020). Review on sun tracking technology in solar PV system. Energy Reports, 6, 392–405.
  • Seme, S., Stumberger, B., Hadziselimovic M., & Sredensek, K. (2020). Solar photovoltaic tracking systems for electricity generation: A review. Energies, 13, (4224), 1-24.
  • Sumathi, V., Jayapragash, R., Bakshi, A., & Akella, P. K. (2017). Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade. Renewable and Sustainable Energy Reviews, 74, 130-138.
  • Nsengiyumva, W., Chen, S. G., Hu L., & Chen X. (2018). Recent advancements and challenges in solar tracking systems (STS): A review. Renewable and Sustainable Energy Reviews, 81, 250–279.
  • Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., & Unkat, S. (2020). A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 37, (100618), 1-14.
  • Ali Jallal, M., Chabaa, S., & Zeroual, A. (2020). A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers. Renewable Energy, 149, 1182–1196.
  • Zhu, Y., Liu, J., & Yang, X. (2020). Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Applied Energy, 264, (114647), 1-7.
  • Al-Rousan, N., Mat Isa, N. A., & Mat Desa, M. K. (2020). Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system. Journal of King Saud University - Engineering Sciences, 32, (7), 459–469.
  • Lim, B. H., Lim, C. S., Li, H., Hu, X. L., Chong, K. K., Zong, J. L., Kang, K., & Tan, W. C. (2020). Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures. Solar Energy, 199, 596–616.
  • Okoye, C. O., Bahrami, A., & Atikol, U. (2018). Evaluating the solar resource potential on different tracking surfaces in Nigeria. Renewable and Sustainable Energy Reviews, 81, 1569–1581.
  • Jacobson, M. Z., & Jadhav, V. (2018). World estimates of pv optimal tilt angles and ratios of sunlight incident upon tilted and tracked pv panels relative to horizontal panels. Solar Energy,169, 55–66.
  • Yilmaz, S, Ozcalik, H. R., Dogmus, O., Dincer F., Akgol O., & Karaaslan M. (2015). Design of two axes sun tracking controller with analytically Solar radiation calculations. Renewable and Sustainable Energy Reviews, 43, 997–1005.
  • Martín-Martínez S., Cañas-Carretõn M., Honrubia-Escribano A., & Gõmez-Lázaro E. (2019). Performance evaluation of large solar photovoltaic power plants in spain. Energy Conversion and Management, 183, 515–528.
  • Bahrami, A., & Okoye, C. O. (2018). The performance and ranking pattern of pv systems incorporated with solar trackers in the northern hemisphere. Renewable and Sustainable Energy Reviews, 97, 138–151.
  • Bahrami A., Okoye C.O., & Atikol U. (2017). Technical and economic assessment of fixed, single and dual-axis tracking pv panels in low latitude countries. Renewable Energy, 113, 563–579.
  • Antonanzas, J., Urraca, R., Martinez-de Pison, F. J., & Antonanzas F. (2018). Optimal solar tracking strategy to increase irradiance in the plane of array under cloudy conditions: A study across Europe. Solar Energy, 163, 122-130.
  • Fernández-Ahumada L. M., Casares F. J., Ramírez-Faz J., & Lõpez-Luque R. (2017). Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy,150, 20-29.
  • Barker, L., Neber, M., & Lee, H., (2013). Design of a low-profile two-axis solar tracker. Solar Energy, 97, 569–576.
  • Eke, R., Senturk, A., 2012., “Performance comparison of a double-axis sun tracking versus fixed PV system”, Sol. Energy 86 (9), 2665–2672.
  • Roth, P., Georgiev, A., & Boudinov, H., (2005). Cheap two axis sun following device”, Energy Conversion Management, 46, 1179–1192.
  • Roth, P., Georgiev, A., & Boudinov, H. (2004). Design and construction of a system for suntracking. Renewable Energy, 29, 393-402.
  • Batayneh W., Owais A., & Nairoukh M. (2013). An intelligent fuzzy based tracking controller for a dual-axis solar PV system. Automation in Construction, 29, 100-106.
  • Kacira, M., Simsek, M., Babur, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable Energy, 29, 1265-1275.
  • Abdallah, K., & Nijmeh S. (2004). Two axes sun tracking system with PLC control. Energy Conversion and Management, 45, (11-12), 1931-1939.
  • Masoumeh, A., Golzarian, M. R., Rohani A., & Zarchi, H. A. (2018). Development of a machine vision dual-axis solar tracking system. Solar Energy, 169, 136–143.
  • Fernandez-Ahumada, L.M., Casares, F.J., Ramírez-Faz, J., & Lopez-Luque, R. (2017). Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy, 150, 20-29.
  • Evseev, E.G., & Kudish, A.I. (2009). The assessment of different models to predict the global solar radiation on a surface tilted to the south. Solar Energy, 83, 377-388.
  • Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia K., & Sharifi A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewabable and Sustainable. Energy Reviews, 13, (8), 1800-1818.
  • Lu, H.C., & Shih, T. L. (2010). Fuzzy system control design with application to solar panel active dual-axis Sun tracker system. Proceeding of the IEEE International Conference on Systems Man and Cybernetics (SMC), 10-13 October, İstanbul, 1878-1883.
  • Rahate, A,, Seung, J., Mehmood, M. U., Kim, Y., Jeon, G., Han, H. J., & Lim, S. H. (2021). Computer vision and photosensor based hybrid control strategy for a two-axis solar tracker - Daylighting application. Solar Energy, 224, 175-183.
  • Wu, C. H., Wang, H. C, & Chang, H. Y. (2022). Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development, 66, 308–318.
  • Asfaw, A. H. (2023). Manual tracking for solar parabolic concentrator –For the case of solar injera baking, Ethiopia. Heliyon, 9, (1), 1-17.
  • Messenger, R. A., & Ventre, J. (2003). Photovoltaic systems engineering 2nd ed. CRC Press, Boca Raton, U.S.A., 437.
  • Ghassoul, M. (2021). A dual solar tracking system based on a light to frequency converter using a microcontroller. Fuel. Communications 6 (2021) 100007.
  • Karafil, A., Ozbay, H., Kesler, M., & Parmaksiz, H. (2015). Calculation of optimum fixed tilt angle of PV panels depending on solar angles and comparison of the results with experimental study conducted in summer in Bilecik, Turkey. 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 26-28 November, Bursa, 971-976.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotovoltaik Güç Sistemleri, Fotovoltaik Cihazlar (Güneş Pilleri), Otomasyon Mühendisliği
Bölüm Makaleler
Yazarlar

Hüseyin Altınkaya 0000-0003-1956-1695

Faysil Abdulhamid Sulayman Alfirjani 0000-0003-3130-2418

Proje Numarası FYL-2020-191.
Yayımlanma Tarihi 30 Mayıs 2025
Gönderilme Tarihi 3 Nisan 2024
Kabul Tarihi 5 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Altınkaya, H., & Alfirjani, F. A. S. (2025). Real-Time Control and Performance Analysis of PLC-SCADA Supervised Stand-Alone Solar Tracking Systems. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 108-136. https://doi.org/10.35193/bseufbd.1463785