EFFECT OF FUNCTIONAL FOOD COMPONENTS ON COGNITIVE FUNCTIONS
Yıl 2024,
Cilt: 8 Sayı: 1, 1 - 15, 30.04.2024
Zeynep Seydim
,
Sinem Keles
,
Gülçin Şatır
Öz
60% of the brain consists of fat and is a structure vulnerable to damage from free radicals formed as a result of oxidative stress at cellular level. Accumulation of free radicals can cause oxidation, disruption of DNA repair mechanisms; such cellular changes can cause neuronal dysfunction and damages in functional neuroplasticity. Nutrition is one of the primary factors affecting brain development, and continues to affect cell renewal throughout life. In this review, it is aimed to explain the effects of oxidative stress at molecular level and some nutritional components, bioactive substances in foods on brain cells and therefore cognitive functions. It has been determined in various studies that omega 3 fatty acids, vitamins, minerals, bioactive components such as choline, polyphenols and psychobiotics positively affect cognitive function by supporting cell repair against oxidative damage. In this review, prominent nutritional components, bioactive substances and their mechanisms are explained as much as possible.
Kaynakça
- 1. Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Frontiers in Cellular Neuroscience. 2017; 11: 24. doi: 10.3389/fncel.2017.00024.
- 2. Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. International Journal of Molecular Sciences. 2021; 22(9): 5026. doi: 10.3390/ijms22095026.
- 3. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine. 2017; 102:203-216. doi: 10.1016/j.freeradbiomed.2016.11.045.
- 4. Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Experimental Gerontology. 2009; 44: 625-633. doi: 10.1016/j.exger.2009.07.003.
- 5. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. The FASEB Journal. 2003; 17:1195-1214. doi: 10.1096/fj.02-0752rev.
- 6. Leandro GS, Sykora P, Bohr VA. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015; 776: 31-39. doi: 10.1016/j.mrfmmm.2014.12.011.
- 7. Thambisetty M, Beason-Held LL, An Y, Kraut M, Metter J, Egan J, Ferrucci L, O’Brien R, Resnick SM. Impaired glucose tolerance in midlife and longitudinal changes in brain function during aging. Neurobiology of Aging. 2013; 34(10): 2271-227. doi: 10.1016/j.neurobiolaging.2013.03.025.
- 8. Neth BJ, Craft S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages, Frontiers in Aging Neuroscience. 2017; 9: 345. doi: 10.3389/fnagi.2017.00345.
- 9. Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TLS, Morris JC, Raichle ME. Loss of brain aerobic glycolysis in normal human aging. Cell Metabolism. 2017; 26:353-360. doi: 10.1016/j.cmet.2017.07.010.
- 10. Cuestas Torres DM, Cardenas FP. Synaptic plasticity in alzheimer’s disease and healthy aging. Reviews in the Neurosciences. 2020; 31:245-268. doi: 10.1515/revneuro-2019-0058.
- 11. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI. Molecular definitions of autophagy and related processes. The EMBO Journal. 2017; 36:1811-1836. doi: 10.15252/embj.201796697.
- 12. VerPlank JJ, Goldberg AL. Regulating protein breakdown through proteasome phosphorylation. Biochemical Journal. 2017; 474(19): 3355-3371. doi: 10.1042/BCJ20160809.
- 13. Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martine G. Cell signaling in neuronal stem cells. Cells. 2018; 7(7): 75. doi:10.3390/cells7070075.
- 14. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & Redox Signaling. 2011;14(7): 1275-1288. doi: 10.1089/ars.2010.3359.
- 15. Arts MJ, Grun C, de Jong RL, Voss HP, Bast A, Mueller MJ, Haenen GR. (Oxidative degradation of lipids during mashing. Journal of Agricultural and Food Chemistry. 2007; 55(17): 7010-7014. doi: 10.1021/jf070505.
- 16. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Bitto A.
Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity. 2017; 8416763. 13p, doi: 10.1155/2017/8416763.
- 17. Khoshnoud MJ, Siavashpour A, Bakhshizadeh M, Rashedinia M. Effects of
sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. Journal of Biochemical and Molecular Toxicology. 2018; 32(2): e2202. doi: 10.1002/jbt.22022.
- 18. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Collins J J. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Science Translational Medicine. 2013;5(192): 192ra85. doi:10.1126/scitranslmed.3006055.
- 19. Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Research. 2015;75(21): 4446-4449. doi: 10.1158/0008-5472.CAN-15-1626.
- 20. Xiao Y, Xiong T, Meng X, Yu D, Xiao Z, Song L. Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines. Journal of Biochemical and Molecular Toxicology. 2019;33(4) e22277. doi: 10.1002/jbt.22277.
- 21. Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: a century with Otto Warburg. In Seminars in cancer biology. 2022. Academic Press.
- 22. Wolf MB, Baynes JW. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals. 2007; 20: 73-81. doi:10.1007/s10534-006-9016-0.
- 23. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders, Chang Gung Med J. 2009;32(4): 370-379.
- 24. Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease. Antioxidants and Redox Signaling. 2009;11(10): 2481-2504. doi: 10.1089/ars.2009.2578.
- 25. Everson-Rose SA, Lewis TT. Psychosocial factors and cardiovascular diseases. Annu. Rev. Public Health. 2005;26: 469-500. doi: 10.1146/annurev.publhealth.26.021304.144542.
- 26. Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metabolism. 2018;27(6): 1176-1199. doi: 10.1016/j.cmet.2018.05.011.
- 27. Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nature Reviews Neuroscience. 2012;13(3): 209-216. doi: 10.1038/nrn3151.
- 28. Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium. 2009;45(6): 625-633. doi: 10.1016/j.ceca.2009.02.009.
- 29. Aragno M, Mastrocola R. Dietary sugars and endogenous formation of
advanced glycation endproducts: emerging mechanisms of disease. Nutrients. 2017;9(4) 385. doi: 10.3390/nu9040385.
- 30. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504): 222-224. doi: 10.1126/science.12192669.
- 31. Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, Mastrocola R. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. The Journal of Nutritional Biochemistry. 2017;42: 160-171. doi: 10.1016/j.jnutbio.2017.01.010.
- 32. Reddy VP, Aryal P, Darkwah EK. Advanced glycation end products in health and disease. Microorganisms. 2022;10(9): 1848. doi:10.3390/microorganisms10091848.
- 33. Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon S H, Yang SJ. Diabetes and Alzheimer's disease: mechanisms and nutritional aspects, Clinical Nutrition Research. 2018;7(4): 229-240. doi: 10.7762/cnr.2018.7.4.229.
- 34. Sridhar. GR, Lakshmi G, Nagamani G. Emerging links between type 2 diabetes and Alzheimer’s disease. World Journal of Diabetes. 2015;6(5): 744-751. doi: 10.4239/wjd.v6.i5.744.
- 35. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580): 353-356. doi: 10.1126/science.1072994.
- 36. Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. H. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Aβ in AD models. Human Molecular Genetics. 2011;20(11): 2091-2102. doi: 10.1093/hmg/ddr091.
- 37. Kook SY, Seok Hong H, Moon M, Mook-Jung I. Disruption of blood-brain barrier in Alzheimer disease pathogenesis. Tissue Barriers. 2013;1(2): 8845-54. doi:10.4161/tisb.23993.
- 38. Ma S, Zhong D, Ma P, Li G, Hua W, Sun Y, Zhang W. Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive decline by regulating the mitochondria-mediated apoptotic pathway and IL-23/IL-17 expression in db/db mice. Cellular Physiology and Biochemistry. 2017;41(5): 1838-1850. doi: 10.1159/000471932.
- 39. Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods-the role of diet in brain performance and health. Nutrition Reviews. 2021;79(6): 693-708. doi: 10.1093/nutrit/nuaa091.
- 40. Güzel-Seydim Z. Fonksiyonel Beslenme (2. Baskı). Sidaş Yayınevi, 2000.
- 41. Nepal B, Brown LJ, Anstey KJ. Rising midlife obesity will worsen future prevalence of dementia. PloS One. 2014;9(9): e99305. doi: 10.1371/journal.pone.0099305
- 42. Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay between the gut-brain axis, obesity and cognitive function. Frontiers in Neuroscience. 2018;12: 155. doi:10.3389/fnins.2018.00155.
- 43. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta‐analysis of longitudinal studies. Internal Medicine Journal. 2012;42(5): 484-491. doi: 10.1111/j.1445-5994.2012.02758.x.
- 44. Jacka FN. Nutritional psychiatry: where to next? EBioMedicine. 2017;17: 24-29. doi: 10.1016/j.ebiom.2017.02.020.
- 45. Freeman LR, Haley-Zitlin V, Stevens C, Granholm AC. Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutritional Neuroscience. 2011;14(1): 32-44. doi: 10.1179/174313211X12966635733358.
- 46. Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, Vitiello B. The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: implications for the treatment of depression, PTSD, and suicidal behaviors. Critical Reviews in Food Science and Nutrition. 2016;56(15): 2560-2578. doi: 10.1080/10408398.2013.876960.
- 47. Frank B, Gupta S. A review of antioxidants and Alzheimer’s disease. Annals of Clinical Psychiatry. 2005;17(4): 269-286. doi: 10.3109/10401230500296428.
- 48. Biesalski HK, Nohr D. New aspects in vitamin A metabolism: the role of retinyl esters as systemic and local sources for retinol in mucous epithelia. The Journal of Nutrition. 2004; 134(12): 3453S-3457S. doi: 10.1093/jn/134.12.3453S.
- 49. Bourre JM. Diet, brain lipids, and brain functions: Polyunsaturated fatty acids, mainly omega-3 fatty acids. Handbook of Neurochemistry and Molecular Neurobiology. 2009;409-441. doi:10.1007/978-0-387-30378-9.
- 50. Kalmijn S, Feskens EJM, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology. 1997;145(1): 33-41. doi: 10.1093/oxfordjournals.aje.a009029.
- 51. Morris M.C, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology. 2004; 62(9): 1573-1579. doi: 10.1212/01.WNL.0000123250.82849.B6.
- 52. Denis I, Potier B, Heberden C, Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. Current Opinion in Clinical Nutrition & Metabolic Care. 2015;18(2): 139-146. doi: 10.1097/MCO.0000000000000141.
- 53. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Medicine. 2008;10: 219-235. doi: 10.1007/s12017-008-8036-z.
- 54. Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. Journal of Nutrition Health and Aging. 2006;10(5): 377-385.
- 55. Czyż K, Bodkowski R, Herbinger G, Librowski T. Omega-3 fatty acids and their role in central nervous system-a review. Current Medicinal Chemistry. 2016; 23(8): 816-831. doi:10.2174/0929867323666160122114439.
- 56. Laye S, Nadjar A, Joffre C, Bazinet RP. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacological Reviews. 2018;70(1): 12-38. doi: 10.1124/pr.117.014092.
- 57. Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: a meta-analysis. Neuroscience & Biobehavioral Reviews. 2015; 48: 1-9. doi: 10.1016/j.neubiorev.2014.11.008.
- 58. Butler LJ, Janulewicz PA, Carwile JL, White RF, Winter MR, Aschengrau A. Childhood and adolescent fish consumption and adult neuropsychological performance: An analysis from the Cape Cod Health Study. Neurotoxicology and Teratology. 2017;61: 47-57. doi: 10.1016/j.ntt.2017.03.001.
- 59. da Silva SL, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimer's & Dementia. 2014;10(4): 485-502. doi:10.1016/j.jalz.2013.05.1771.
- 60. Tabatabaeizadeh SA, Tafazoli N, Ferns GA, Avan A, Ghayour-Mobarhan M. Vitamin D, the gut microbiome and inflammatory bowel disease. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences. 2018; 23. doi: 10.4103/jrms. JRMS_606_17.
- 61. Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Frontiers in Immunology. 2020;10: 3141. doi: 10.3389/fimmu.2019.03141.
- 62. Bading H. Nuclear calcium signalling in the regulation of brain function. Nature Reviews Neuroscience. 2013;14(9): 593-608. doi:10.1038/nrn3531.
- 63. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T. Vitamin D and intestinal calcium absorption. Molecular and Cellular Endocrinology. 2011;347(1-2):25-29. doi: 10.1016/j.mce.2011.05.038.
- 64. Jia J, Hu J, Huo X, Miao, R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. 2019; 90(12): 1347-1352. doi:10.1136/jnnp-2018-320199.
- 65. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy-a review. Nutrients. 2016;8(2): 68. doi: 10.3390/nu8020068.
- 66. Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, Huang G. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediators of Inflammation. 2016;Article ID 5912146. doi: 10.1155/2016/5912146.
- 67. Ford TC, Downey LA, Simpson T, McPhee G, Oliver C, Stough C. The effect of a high-dose vitamin B multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: a randomized control trial. Nutrients. 2018; 10(12): 1860. doi: 10.3390/nu10121860.
- 68. Gibson GE, Hirsch JA, Fonzetti P, Jordan BD, Cirio RT, Elder J. Vitamin B1 (thiamine) and dementia. Annals of the New York Academy of Sciences. 2016;1367(1): 21-30. doi: 10.1111/nyas.13031.
- 69. Fortune NC, Harville EW, Guralnik JM, Gustat J, Chen W, Qi L, Bazzano LA. Dietary intake and cognitive function: evidence from the Bogalusa Heart Study. The American Journal of Clinical Nutrition. 2019;109(6): 1656-1663.
- 70. Smith AD. Hippocampus as a mediator of the role of vitamin B-12 in memory. The American Journal of Clinical Nutrition. 2016;103(4): 959-960.
- 71. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. The Lancet. 2007;369(9557): 208-216. doi: 10.1016/S0140-6736(07)60109-3.
- 72. Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Song W. Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathologica. 2017;133:967-982. doi: 10.1007/s00401-017-1669-y.
- 73. Shahar S, Lee LK, Rajab N, Lim CL, Harun NA, Noh MFNM, Jamal R. Association between vitamin A, vitamin E and apolipoprotein E status with mild cognitive impairment among elderly people in low-cost residential areas. Nutritional Neuroscience. 2013;16(1): 6-12. doi /10.1179/1476830512Y.0000000013.
- 74. Yuan C, Fondell E, Ascherio A, Okereke OI, Grodstein F, Hofman A, Willett WC. Long-term intake of dietary carotenoids is positively associated with late-life subjective cognitive function in a prospective study in US women. The Journal of Nutrition. 2020;150(7):1871-1879. doi: 10.1093/jn/nxaa087.
- 75. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and retinoic acid in cognition and cognitive disease. Annual Review of Nutrition. 202;40: 247-272 doi: 0.1146/annurev-nutr-122319-034227.
- 76. Pearson JF, Pullar JM, Wilson R, Spittlehouse JK, Vissers MC, Skidmore PM, Carr AC. Vitamin C status correlates with markers of metabolic and cognitive health in 50-year-olds: findings of the CHALICE cohort study. Nutrients. 2017;9(8): 831. doi: 10.3390/nu9080831.
- 77. Beydoun MA, Fanelli-Kuczmarski MT, Kitner-Triolo MH, Beydoun HA, Kaufman JS, Mason MA, Zonderman AB. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosomatic Medicine. 2015; 77(1): 68-82. doi: 10.1097/PSY.0000000000000129.
- 78. Alisi L, Cao R, De Angelis C, Cafolla A, Caramia F, Cartocci G, Fiorelli M. The relationships between vitamin K and cognition: a review of current evidence. Frontiers in Neurology. 2019;10: 239. doi: 10.3389/fneur.2019.00239.
- 79. Payne ME, Anderson JJB, Steffens DC. Calcium and vitamin D intakes may be positively associated with brain lesions in depressed and nondepressed elders. Nutrition Research. 2008;28 (5): 285-292 doi:10.1016/j.nutres.2008.02.013.
- 80. Totten MS, Davenport TS, Edwards LF, Howell JM. Trace Minerals and Anxiety: A Review of Zinc, Copper, Iron, and Selenium. Dietetics. 2023;2(1):83-103. doi: 10.3390/dietetics2010008.
- 81. Młyniec K, Gaweł M, Doboszewska U, Starowicz G, Nowak G. The role of elements in anxiety. Vitamins and Hormones. 2017;103: 295-326. doi: 10.1016/bs.vh.2016.09.002.
- 82. Russo AJ. Decreased serum Hepatocyte Growth Factor (HGF) in individuals with anxiety increases after zinc therapy. Nutrition and Metabolic Insights. 201;3, NMI-S5495. doi: 10.4137/NMI.S5495.
- 83. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proceedings of the Japan Academy. 2010;Series B 86(6): 588-610. doi: 10.2183/pjab.86.588.
- 84. Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. European Journal of Pharmacology. 2010;626(1):49-56. doi: 0.1016/j.ejphar.2009.10.014.
- 85. Bodine AB. Fundemetals of Nutrition. Class notes. Clemson University. 2001.
- 86. Reddy VS, Bukke S, Dutt N, Rana P, Pandey AK. A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer's disease: A metal meta-analysis (AMMA study-I). Journal of Trace Elements in Medicine and Biology. 2017;42: 68-75. doi:10.1016/j.jtemb.2017.04.005.
- 87. Varikasuvu SR, Prasad VS, Kothapalli J, Manne M. Brain selenium in Alzheimer’s disease (BRAIN SEAD Study): a systematic review and meta-analysis. Biological Trace Element Research. 2019;189(2): 361-369. doi: 10.1007/s12011-018-1492-x.
- 88. Zeisel SH. Choline: an important nutrient in brain development, liver function and carcinogenesis. Journal of the American College of Nutrition. 1992;11(54):473-481. doi: 10.1080/07315724.1992.10718251.
- 89. Wallace TC, Blusztajn JK, Caudill MA, Klatt KC, Zeisel SH. Choline: the neurocognitive essential nutrient of interest to obstetricians and gynecologists. Journal of Dietary Supplements. 2020;17(6): 733-752. doi: 10.1080/19390211.2019.1639875.
- 90. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2:270-278. doi: 10.4161/oxim.2.5.9498.
- 91. Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine. 2004;37(11): 683-1693. doi: 10.1016/j.freeradbiomed.2004.08.002.
- 92. Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, Santos CN. Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports. 2017;7(1):11456. doi: 10.1038/s41598-017-11512-6.
- 93. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Dinan TG. The microbiota-gut-brain axis. Physiological Reviews. 2019;99:1877-2013. doi: 10.1152/physrev.00018.2018.
- 94. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research. 2017;179: 223-244. doi:10.1016/j.trsl.2016.10.002.
- 95. Filosa S, Di Meo F, Crispi S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research. 2018;13(12):2055. doi:10.4103/1673-5374.241429.
- 96. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 2021;19(4): 241-255. doi: 10.1038/s41579-020-00460-0.
- 97. Moloney RD, O’Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Frontiers in Psychiatry. 2015;6:15. doi: 10.3389/fpsyt.2015.00015.
- 98. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, De Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS One. 2010;5(5): e10667. doi: 10.1371/journal.pone.0010667.
- 99. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Ventura M.Diversity of bifidobacteria within the infant gut microbiota. PloS One. 20012;7(5): e36957. doi: 10.1371/journal.pone.0036957.
- 100. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sciences. 2021;264: 118627. doi:10.1016/j.lfs.2020.118627.
- 101. Foster JA, Neufeld KAM. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences. 2013;36(5): 305-312. doi: 10.1016/j.tins.2013.01.005.
- 102. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. International Journal of Molecular Sciences. 2019;20(9): 2115. doi: 10.3390/ijms20092115.
- 103. Sanada K, Nakajima S, Kurokawa S, Barceló-Soler A, Ikuse D, Hirata A, Kishimoto T. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. Journal of Affective Disorders. 2020;266. 1-13. doi: 10.1016/j.jad.2020.01.102.
- 104. Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harbor Perspectives in Medicine. 2019;9(8): article 034199. doi: 10.1101/cshperspect.a034199.
- 105. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011;108(38): 16050-16055. doi:10.1073/pnas.1102999108.
- 106. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry. 2018; 44. doi: 10.3389/fpsyt.2018.00044.
- 107. Ounnas F, de Lorgeril M, Salen P, Laporte F, Calani L, Mena P, Demeilliers C. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Scientific Reports. 2017;7(1): 40162. doi: 10.1038/srep40162.
- 108. Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, Bartolomé B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International. 2015;Article ID 850902. doi:10.1155/2015/850902
- 109. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. International Journal of Molecular Sciences. 2017;18(12): 2645. doi: 10.3390/ijms18122645.
- 110. Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of advanced glycation end product (AGE) formation and accumulation. Reactive Oxygen Species: Network Pharmacology and Therapeutic Applications. 2021;395-423.
- 111. Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochemistry International. 2017;103: 8-23. doi: 10.1016/j.neuint.2016.12.012.
- 112. Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Molecular Neurobiology. 2019;56: 1502-1516. doi: 10.1007/s12035-018-1157-y.
- 113. Li J, Liu Y, Wang L, Gu Z, Huan Z, Fu H, Liu Q. Hesperetin protects SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity via activation of NRF2/ARE signaling pathways. Tropical Journal of Pharmaceutical Research. 2020;19(6):1197-1201. doi: 10.4314/tjpr.v19i6.12.
- 114. Qi Y, Shang L, Liao Z, Su H, Jing H, Wu B, Jia Y. . Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metabolic Brain Disease. 2019;34: 257-266. doi: 10.1007/s11011-018-0348-6.
- 115. Dolati S, Babaloo Z, Ayromlou H, Ahmadi M, Rikhtegar R, Rostamzadeh D, Yousefi M. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. Journal of Neuroimmunology. 2019; 327: 15-21. doi: 10.1016/j.jneuroim.2019.01.007.
- 116. El Nebrisi E, Javed H, Ojha SK, Oz M, Shehab S. Neuroprotective effect of curcumin on the nigrostriatal pathway in a 6-hydroxydopmine-induced rat model of Parkinson’s disease is mediated by α7-nicotinic receptors. International Journal of Molecular Sciences,. 2020;21(19): 7329. doi: 10.3390/ijms21197329.
- 117. Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochemical Research. 2020;45:1130-1141. doi: 10.1007/s11064-020-02992-6.
- 118. Sun YP, Gu JF, Tan XB, Wang CF, Jia XB, Feng L, Liu JP. Curcumin inhibits advanced glycation end product induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal. Molecular Medicine Reports. 2016;13(2): 1475-1486. doi: 10.3892/mmr.2015.4725.
- 119. Wang P, Gong Q, Hu J, Li X, Zhang X. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: applications in the ROS-related diseases. Journal of Medicinal Chemistry. 2020;64(1):298-325. doi: 10.1021/acs.jmedchem.0c01704.
- 120. Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Scientific Reports. 2016;6(1): 31450. doi: 10.1038/srep31450.
- 121. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules. 2013;18(8): 9949-9965. doi: 10.3390/molecules18089949.
- 122. Zhou Q, Cheng KW, Gong J, Li, ET, Wang M. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. Biochemical Pharmacology. 2019;166:231-241 doi:10.1016/j.bcp.2019.05.027.
- 123. Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKA, Viana GS. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evidence-Based Complementary and Alternative Medicine. 2015;article ID 161092. doi:10.1155/2015/161092.
- 124. Chen SQ, Wang ZS, Ma YX, Zhang W, Lu JL, Liang YR, Zheng XQ. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules. 2018;23(3):512. doi: 10.3390/molecules23030512.
- 125. Zhang ZX, Li YB, Zhao RP. Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochemical Research. 2017; 42: 468-480. doi:10.1007/s11064-016-2093-8.
- 126. Assunção M, Santos-Marques MJ, Carvalho F, Andrade JP. Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival. Free Radical Biology and Medicine. 2010;48(6).:831-838. doi: 10.1016/j.freeradbiomed.2010.01.003.
- 127. Xu Y, Zhang JJ, Xiong L, Zhang L, Sun D, Liu H. Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. The Journal of Nutritional Biochemistry. 2010; 21(8): 741-748. doi: 10.1016/j.jnutbio.2009.05.002.
- 128. Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Ruan DY. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology. 2008;249(1): 45-54. doi: 10.1016/j.tox.2008.04.006.
- 129. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M,Kim MO. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Molecular Neurobiology. 2018; 55: 6076-6093. doi: 10.1007/s12035-017-0798-6.
- 130. Li P, Feng D, Yang D, Li X, Sun J, Wang G, Bai W. Protective effects of anthocyanins on neurodegenerative diseases. Trends in Food Science & Technology. 2021;117: 205-217. doi: 10.1016/j.tifs.2021.05.005.
- 131. Suttisansanee U. Charoenkiatkul S, Jongruaysup B, Tabtimsri S, Siriwan D, Temviriyanukul P. Mulberry fruit cultivar ‘Chiang Mai’prevents beta-amyloid toxicity in PC12 neuronal cells and in a Drosophila model of Alzheimer’s disease. Molecules. 2020;25(8): 1837. doi: 10.3390/molecules25081837.
- 132. Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases Critical Reviews in Food Science and Nutrition. 2023;63(29):9816-9842. doi: 10.1080/10408398.2022.2076064.
- 133. Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, Naz N. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. Plos One. 2020;15(1): e0227631. doi: 10.1371/journal.pone.0227631.
- 134. Mani S, Sekar S, Barathidasan R, Manivasagam T, Thenmozhi AJ, Sevanan M, Sakharkar MK. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotoxicity Research. 2018;33:656-670. doi:10.1007/s12640-018-9869-3.
- 135. Nakajima A, Aoyama Y, Shin EJ, Nam Y, Kim HC, Nagai T, Yamada K. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer's disease (3XTg-AD). Behavioural Brain Research. 2015;289 69-77, doi: 10.1016/j.bbr.2015.04.028.
- 136. Shamsi A, Shahwan M, Khan MS, Husain FM, Alhumaydhi FA, Aljohani AS, Islam A. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega. 2021;6(11): 7922-7930. doi: 10.1021/acsomega.1c00527.
- 137. Paula PC, Angelica Maria SG, Luis CH, Gloria Patricia CG. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules. 2019;24(12): 2287. doi: 10.3390/molecules24122287
- 138. Nazif NN, Khosravi M, Ahmadi R, Bananej M, Ahmad M. Neuroprotection Effect of Quercetin on TNF-α Levels and Gene Expression of Caspase 3 in MPTP-Induced Male NMRI Mice, Iranian Red Crescent Medical Journal. 2019;21(12): e94883, doi: 10.5812/ircmj.94883.
- 139. Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. Journal of the Neurological Sciences. 2007;262(1-2):77-84. doi: 10.1016/j.jns.2007.06.028.
- 140. Heitman E, Ingram DK. Cognitive and neuroprotective effects of chlorogenic acid Nutritional Neuroscience. 2017;20(1): 32-39. doi: 10.1179/1476830514Y.0000000146.
- 141. Zhu H, Poojary MM, Andersen ML, Lund MN. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal. Food Chemistry. 2020;319: 126500. doi: 10.1016/j.foodchem.2020.126500.
- 142. Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7, 8-dihydroxyflavone in female mice. Molecular Metabolism. 2021;45:101149. doi:10.1016/j.molmet.2020.101149.
- 143. Nie S, Ma K, Sun M, Lee M, Tan Y, Chen G, Cao X. 7, 8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinson’s Disease. 2019;Article ID 9193534. doi: 10.1155/2019/9193534.
- 144. Tamtaji OR, Taghizadeh M, Kakhaki RD, Kouchaki E, Bahmani F, Borzabadi S, Asemi Z. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clinical Nutrition. 2019;38(3):1031-1035. doi: 10.1016/j.clnu.2018.05.018.
- 145. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Salami M. (. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience. 2016;8: 256. doi: 10.3389/fnagi.2016.00256.
- 146. Rucklidge J.J. Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression. Adv Mind Body Med. 2013;27(3): 14-18.
- 147. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. European Journal of Clinical Nutrition. 2007;61(3):355-361. doi: 10.1038/sj.ejcn.1602546.
- 148. Nishida K, Sawada D, Kawai T, Kuwano Y, Fujiwara S, Rokutan K. Para‐psychobiotic Lactobacillus gasseri CP2305 ameliorates stress‐related symptoms and sleep quality. Journal of Applied Microbiology. 2017;123(6): 1561-1570. doi: 10.1111/jam.13594.
- 149. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Cazaubiel JM. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition. 2011;105(5): 755-764. doi: 10.1017/S0007114510004319.
- 150. Rao AV, Bested A C, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathogens. 2009;1(1):1-6. doi:10.1186/1757-4749-1-6.
- 151. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451-1463. doi: 10.1016/j.cell.2013.11.024.
- 152. Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterology & Motility. 2014;26(11): 1615-1627. doi: 10.1111/nmo.12427.
- 153. Desbonnet L, Garrett L, Clark G, Kiely B, Cryan JF, Dinan T. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience,. 2010;170(4)Ç 1179-1188. doi: 10.1016/j.neuroscience.2010.08.005.
- 154. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2): 599-609.doi: 10.1053/j.gastro.2011.04.052.
- 155. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Clarke G. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry. 2016;6(11): e939-e939. doi:10.1038/tp.2016.191.
- 156. Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Science China Life Sciences. 2014;57: 327-335. doi: 10.1007/s11427-014-4615-4.
- 157. Wang H, Sun Y, Xin J, Zhang T, Sun N, Ni X, Bai Y. (Lactobacillus johnsonii BS15 prevents psychological stress–induced memory dysfunction in mice by modulating the Gut-Brain Axis. Frontiers in Microbiology. 2020;11: 1941. doi: 10.3389/fmicb.2020.01941.
- 158. Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Tsai YC. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Research. 2016;1631: 1-12. doi: 10.1016/j.brainres.2015.11.018.
- 159. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neurosciences. 2016;39(11): 763-781. doi: 10.1016/j.tins.2016.09.002.
- 160. McVey Neufeld KA, Kay S, Bienenstock J. Mouse strain affects behavioral and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Frontiers in Neuroscience. 2018;12: 294. doi: 10.3389/fnins.2018.00294.
- 161. Cheng LH, Chou PY, Hou AT, Huang CL, Shiu WL, Wang S. (. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in D-galactose-induced aging mice. Food & Function. 2022;13(9): 5240-5251. doi: 10.1039/D2FO00165A.
- 162. Deepika Shukla, AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Developmental Psychobiology. 2023; 65(5): e22404 doi: 10.1002/dev.22404.
FONKSİYONEL GIDA BİLEŞENLERİNİN BİLİŞSEL FONKSİYONLAR ÜZERİNE MOLEKÜLER ETKİ MEKANİZMALARI
Yıl 2024,
Cilt: 8 Sayı: 1, 1 - 15, 30.04.2024
Zeynep Seydim
,
Sinem Keles
,
Gülçin Şatır
Öz
Beynin %60’ı yağdan oluşur ve hücre düzeyinde oksidatif stres sonucunda oluşan serbest radikallerin vereceği hasara açık bir yapıdır. Nöronlarda üretilen başlıca serbest radikaller, süperoksit ve nitrik oksittir. Serbest radikallerin birikimi DNA oksidasyonuna ve DNA onarım mekanizmalarının bozulmasına neden olabilir; bu gibi hücresel değişiklikler nöronal işlev bozukluğuna, işlevsel ve yapısal nöroplastisiteye zarar verebilmektedir. Erken beyin gelişimini etkileyen faktörlerin başında beslenme gelmekte ve beslenme şekli hayat boyu hücre yenileme ve onarımını etkilemeyi sürdürmektedir. Bu derlemede oksidatif stresin moleküler düzeyde hücreye etkilerinin açıklanması ve gıdalardaki bazı besin bileşenleriyle, biyoaktif maddelerin beyin hücrelerine ve dolayısıyla bilişsel fonksiyonlara etkilerinin açıklanması hedeflenmiştir. Omega 3 yağ asitlerinin, vitaminlerin ve minerallerin, kolin, polifenoller gibi biyoaktif bileşenlerle psikobiyotiklerin, oksidatif hasara karşı hücre onarımına destek vererek, bilişsel fonksiyonu olumlu etkilediği çeşitli araştırmalarda belirlenmiştir. Bu derlemede öne çıkan besin bileşenleriyle, biyoaktif maddeler ve etki mekanizmaları mümkün olabildiğince açıklanmıştır.
Kaynakça
- 1. Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Frontiers in Cellular Neuroscience. 2017; 11: 24. doi: 10.3389/fncel.2017.00024.
- 2. Melzer TM, Manosso LM, Yau SY, Gil-Mohapel J, Brocardo PS. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. International Journal of Molecular Sciences. 2021; 22(9): 5026. doi: 10.3390/ijms22095026.
- 3. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine. 2017; 102:203-216. doi: 10.1016/j.freeradbiomed.2016.11.045.
- 4. Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Experimental Gerontology. 2009; 44: 625-633. doi: 10.1016/j.exger.2009.07.003.
- 5. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. The FASEB Journal. 2003; 17:1195-1214. doi: 10.1096/fj.02-0752rev.
- 6. Leandro GS, Sykora P, Bohr VA. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015; 776: 31-39. doi: 10.1016/j.mrfmmm.2014.12.011.
- 7. Thambisetty M, Beason-Held LL, An Y, Kraut M, Metter J, Egan J, Ferrucci L, O’Brien R, Resnick SM. Impaired glucose tolerance in midlife and longitudinal changes in brain function during aging. Neurobiology of Aging. 2013; 34(10): 2271-227. doi: 10.1016/j.neurobiolaging.2013.03.025.
- 8. Neth BJ, Craft S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages, Frontiers in Aging Neuroscience. 2017; 9: 345. doi: 10.3389/fnagi.2017.00345.
- 9. Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TLS, Morris JC, Raichle ME. Loss of brain aerobic glycolysis in normal human aging. Cell Metabolism. 2017; 26:353-360. doi: 10.1016/j.cmet.2017.07.010.
- 10. Cuestas Torres DM, Cardenas FP. Synaptic plasticity in alzheimer’s disease and healthy aging. Reviews in the Neurosciences. 2020; 31:245-268. doi: 10.1515/revneuro-2019-0058.
- 11. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI. Molecular definitions of autophagy and related processes. The EMBO Journal. 2017; 36:1811-1836. doi: 10.15252/embj.201796697.
- 12. VerPlank JJ, Goldberg AL. Regulating protein breakdown through proteasome phosphorylation. Biochemical Journal. 2017; 474(19): 3355-3371. doi: 10.1042/BCJ20160809.
- 13. Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martine G. Cell signaling in neuronal stem cells. Cells. 2018; 7(7): 75. doi:10.3390/cells7070075.
- 14. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & Redox Signaling. 2011;14(7): 1275-1288. doi: 10.1089/ars.2010.3359.
- 15. Arts MJ, Grun C, de Jong RL, Voss HP, Bast A, Mueller MJ, Haenen GR. (Oxidative degradation of lipids during mashing. Journal of Agricultural and Food Chemistry. 2007; 55(17): 7010-7014. doi: 10.1021/jf070505.
- 16. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Bitto A.
Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity. 2017; 8416763. 13p, doi: 10.1155/2017/8416763.
- 17. Khoshnoud MJ, Siavashpour A, Bakhshizadeh M, Rashedinia M. Effects of
sodium benzoate, a commonly used food preservative, on learning, memory, and oxidative stress in brain of mice. Journal of Biochemical and Molecular Toxicology. 2018; 32(2): e2202. doi: 10.1002/jbt.22022.
- 18. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Collins J J. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Science Translational Medicine. 2013;5(192): 192ra85. doi:10.1126/scitranslmed.3006055.
- 19. Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Research. 2015;75(21): 4446-4449. doi: 10.1158/0008-5472.CAN-15-1626.
- 20. Xiao Y, Xiong T, Meng X, Yu D, Xiao Z, Song L. Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines. Journal of Biochemical and Molecular Toxicology. 2019;33(4) e22277. doi: 10.1002/jbt.22277.
- 21. Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: a century with Otto Warburg. In Seminars in cancer biology. 2022. Academic Press.
- 22. Wolf MB, Baynes JW. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals. 2007; 20: 73-81. doi:10.1007/s10534-006-9016-0.
- 23. Jou SH, Chiu NY, Liu CS. Mitochondrial dysfunction and psychiatric disorders, Chang Gung Med J. 2009;32(4): 370-379.
- 24. Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease. Antioxidants and Redox Signaling. 2009;11(10): 2481-2504. doi: 10.1089/ars.2009.2578.
- 25. Everson-Rose SA, Lewis TT. Psychosocial factors and cardiovascular diseases. Annu. Rev. Public Health. 2005;26: 469-500. doi: 10.1146/annurev.publhealth.26.021304.144542.
- 26. Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metabolism. 2018;27(6): 1176-1199. doi: 10.1016/j.cmet.2018.05.011.
- 27. Stranahan AM, Mattson MP. Recruiting adaptive cellular stress responses for successful brain ageing. Nature Reviews Neuroscience. 2012;13(3): 209-216. doi: 10.1038/nrn3151.
- 28. Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium. 2009;45(6): 625-633. doi: 10.1016/j.ceca.2009.02.009.
- 29. Aragno M, Mastrocola R. Dietary sugars and endogenous formation of
advanced glycation endproducts: emerging mechanisms of disease. Nutrients. 2017;9(4) 385. doi: 10.3390/nu9040385.
- 30. Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504): 222-224. doi: 10.1126/science.12192669.
- 31. Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, Mastrocola R. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. The Journal of Nutritional Biochemistry. 2017;42: 160-171. doi: 10.1016/j.jnutbio.2017.01.010.
- 32. Reddy VP, Aryal P, Darkwah EK. Advanced glycation end products in health and disease. Microorganisms. 2022;10(9): 1848. doi:10.3390/microorganisms10091848.
- 33. Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon S H, Yang SJ. Diabetes and Alzheimer's disease: mechanisms and nutritional aspects, Clinical Nutrition Research. 2018;7(4): 229-240. doi: 10.7762/cnr.2018.7.4.229.
- 34. Sridhar. GR, Lakshmi G, Nagamani G. Emerging links between type 2 diabetes and Alzheimer’s disease. World Journal of Diabetes. 2015;6(5): 744-751. doi: 10.4239/wjd.v6.i5.744.
- 35. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580): 353-356. doi: 10.1126/science.1072994.
- 36. Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. H. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Aβ in AD models. Human Molecular Genetics. 2011;20(11): 2091-2102. doi: 10.1093/hmg/ddr091.
- 37. Kook SY, Seok Hong H, Moon M, Mook-Jung I. Disruption of blood-brain barrier in Alzheimer disease pathogenesis. Tissue Barriers. 2013;1(2): 8845-54. doi:10.4161/tisb.23993.
- 38. Ma S, Zhong D, Ma P, Li G, Hua W, Sun Y, Zhang W. Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive decline by regulating the mitochondria-mediated apoptotic pathway and IL-23/IL-17 expression in db/db mice. Cellular Physiology and Biochemistry. 2017;41(5): 1838-1850. doi: 10.1159/000471932.
- 39. Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods-the role of diet in brain performance and health. Nutrition Reviews. 2021;79(6): 693-708. doi: 10.1093/nutrit/nuaa091.
- 40. Güzel-Seydim Z. Fonksiyonel Beslenme (2. Baskı). Sidaş Yayınevi, 2000.
- 41. Nepal B, Brown LJ, Anstey KJ. Rising midlife obesity will worsen future prevalence of dementia. PloS One. 2014;9(9): e99305. doi: 10.1371/journal.pone.0099305
- 42. Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay between the gut-brain axis, obesity and cognitive function. Frontiers in Neuroscience. 2018;12: 155. doi:10.3389/fnins.2018.00155.
- 43. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta‐analysis of longitudinal studies. Internal Medicine Journal. 2012;42(5): 484-491. doi: 10.1111/j.1445-5994.2012.02758.x.
- 44. Jacka FN. Nutritional psychiatry: where to next? EBioMedicine. 2017;17: 24-29. doi: 10.1016/j.ebiom.2017.02.020.
- 45. Freeman LR, Haley-Zitlin V, Stevens C, Granholm AC. Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutritional Neuroscience. 2011;14(1): 32-44. doi: 10.1179/174313211X12966635733358.
- 46. Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, Vitiello B. The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: implications for the treatment of depression, PTSD, and suicidal behaviors. Critical Reviews in Food Science and Nutrition. 2016;56(15): 2560-2578. doi: 10.1080/10408398.2013.876960.
- 47. Frank B, Gupta S. A review of antioxidants and Alzheimer’s disease. Annals of Clinical Psychiatry. 2005;17(4): 269-286. doi: 10.3109/10401230500296428.
- 48. Biesalski HK, Nohr D. New aspects in vitamin A metabolism: the role of retinyl esters as systemic and local sources for retinol in mucous epithelia. The Journal of Nutrition. 2004; 134(12): 3453S-3457S. doi: 10.1093/jn/134.12.3453S.
- 49. Bourre JM. Diet, brain lipids, and brain functions: Polyunsaturated fatty acids, mainly omega-3 fatty acids. Handbook of Neurochemistry and Molecular Neurobiology. 2009;409-441. doi:10.1007/978-0-387-30378-9.
- 50. Kalmijn S, Feskens EJM, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. American Journal of Epidemiology. 1997;145(1): 33-41. doi: 10.1093/oxfordjournals.aje.a009029.
- 51. Morris M.C, Evans DA, Bienias JL, Tangney CC, Wilson RS. Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology. 2004; 62(9): 1573-1579. doi: 10.1212/01.WNL.0000123250.82849.B6.
- 52. Denis I, Potier B, Heberden C, Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. Current Opinion in Clinical Nutrition & Metabolic Care. 2015;18(2): 139-146. doi: 10.1097/MCO.0000000000000141.
- 53. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Medicine. 2008;10: 219-235. doi: 10.1007/s12017-008-8036-z.
- 54. Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. Journal of Nutrition Health and Aging. 2006;10(5): 377-385.
- 55. Czyż K, Bodkowski R, Herbinger G, Librowski T. Omega-3 fatty acids and their role in central nervous system-a review. Current Medicinal Chemistry. 2016; 23(8): 816-831. doi:10.2174/0929867323666160122114439.
- 56. Laye S, Nadjar A, Joffre C, Bazinet RP. Anti-inflammatory effects of omega-3 fatty acids in the brain: physiological mechanisms and relevance to pharmacology. Pharmacological Reviews. 2018;70(1): 12-38. doi: 10.1124/pr.117.014092.
- 57. Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: a meta-analysis. Neuroscience & Biobehavioral Reviews. 2015; 48: 1-9. doi: 10.1016/j.neubiorev.2014.11.008.
- 58. Butler LJ, Janulewicz PA, Carwile JL, White RF, Winter MR, Aschengrau A. Childhood and adolescent fish consumption and adult neuropsychological performance: An analysis from the Cape Cod Health Study. Neurotoxicology and Teratology. 2017;61: 47-57. doi: 10.1016/j.ntt.2017.03.001.
- 59. da Silva SL, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: systematic review and meta-analysis. Alzheimer's & Dementia. 2014;10(4): 485-502. doi:10.1016/j.jalz.2013.05.1771.
- 60. Tabatabaeizadeh SA, Tafazoli N, Ferns GA, Avan A, Ghayour-Mobarhan M. Vitamin D, the gut microbiome and inflammatory bowel disease. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences. 2018; 23. doi: 10.4103/jrms. JRMS_606_17.
- 61. Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. Frontiers in Immunology. 2020;10: 3141. doi: 10.3389/fimmu.2019.03141.
- 62. Bading H. Nuclear calcium signalling in the regulation of brain function. Nature Reviews Neuroscience. 2013;14(9): 593-608. doi:10.1038/nrn3531.
- 63. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T. Vitamin D and intestinal calcium absorption. Molecular and Cellular Endocrinology. 2011;347(1-2):25-29. doi: 10.1016/j.mce.2011.05.038.
- 64. Jia J, Hu J, Huo X, Miao, R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. 2019; 90(12): 1347-1352. doi:10.1136/jnnp-2018-320199.
- 65. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy-a review. Nutrients. 2016;8(2): 68. doi: 10.3390/nu8020068.
- 66. Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, Huang G. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediators of Inflammation. 2016;Article ID 5912146. doi: 10.1155/2016/5912146.
- 67. Ford TC, Downey LA, Simpson T, McPhee G, Oliver C, Stough C. The effect of a high-dose vitamin B multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: a randomized control trial. Nutrients. 2018; 10(12): 1860. doi: 10.3390/nu10121860.
- 68. Gibson GE, Hirsch JA, Fonzetti P, Jordan BD, Cirio RT, Elder J. Vitamin B1 (thiamine) and dementia. Annals of the New York Academy of Sciences. 2016;1367(1): 21-30. doi: 10.1111/nyas.13031.
- 69. Fortune NC, Harville EW, Guralnik JM, Gustat J, Chen W, Qi L, Bazzano LA. Dietary intake and cognitive function: evidence from the Bogalusa Heart Study. The American Journal of Clinical Nutrition. 2019;109(6): 1656-1663.
- 70. Smith AD. Hippocampus as a mediator of the role of vitamin B-12 in memory. The American Journal of Clinical Nutrition. 2016;103(4): 959-960.
- 71. Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. The Lancet. 2007;369(9557): 208-216. doi: 10.1016/S0140-6736(07)60109-3.
- 72. Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Song W. Marginal vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathologica. 2017;133:967-982. doi: 10.1007/s00401-017-1669-y.
- 73. Shahar S, Lee LK, Rajab N, Lim CL, Harun NA, Noh MFNM, Jamal R. Association between vitamin A, vitamin E and apolipoprotein E status with mild cognitive impairment among elderly people in low-cost residential areas. Nutritional Neuroscience. 2013;16(1): 6-12. doi /10.1179/1476830512Y.0000000013.
- 74. Yuan C, Fondell E, Ascherio A, Okereke OI, Grodstein F, Hofman A, Willett WC. Long-term intake of dietary carotenoids is positively associated with late-life subjective cognitive function in a prospective study in US women. The Journal of Nutrition. 2020;150(7):1871-1879. doi: 10.1093/jn/nxaa087.
- 75. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and retinoic acid in cognition and cognitive disease. Annual Review of Nutrition. 202;40: 247-272 doi: 0.1146/annurev-nutr-122319-034227.
- 76. Pearson JF, Pullar JM, Wilson R, Spittlehouse JK, Vissers MC, Skidmore PM, Carr AC. Vitamin C status correlates with markers of metabolic and cognitive health in 50-year-olds: findings of the CHALICE cohort study. Nutrients. 2017;9(8): 831. doi: 10.3390/nu9080831.
- 77. Beydoun MA, Fanelli-Kuczmarski MT, Kitner-Triolo MH, Beydoun HA, Kaufman JS, Mason MA, Zonderman AB. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosomatic Medicine. 2015; 77(1): 68-82. doi: 10.1097/PSY.0000000000000129.
- 78. Alisi L, Cao R, De Angelis C, Cafolla A, Caramia F, Cartocci G, Fiorelli M. The relationships between vitamin K and cognition: a review of current evidence. Frontiers in Neurology. 2019;10: 239. doi: 10.3389/fneur.2019.00239.
- 79. Payne ME, Anderson JJB, Steffens DC. Calcium and vitamin D intakes may be positively associated with brain lesions in depressed and nondepressed elders. Nutrition Research. 2008;28 (5): 285-292 doi:10.1016/j.nutres.2008.02.013.
- 80. Totten MS, Davenport TS, Edwards LF, Howell JM. Trace Minerals and Anxiety: A Review of Zinc, Copper, Iron, and Selenium. Dietetics. 2023;2(1):83-103. doi: 10.3390/dietetics2010008.
- 81. Młyniec K, Gaweł M, Doboszewska U, Starowicz G, Nowak G. The role of elements in anxiety. Vitamins and Hormones. 2017;103: 295-326. doi: 10.1016/bs.vh.2016.09.002.
- 82. Russo AJ. Decreased serum Hepatocyte Growth Factor (HGF) in individuals with anxiety increases after zinc therapy. Nutrition and Metabolic Insights. 201;3, NMI-S5495. doi: 10.4137/NMI.S5495.
- 83. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proceedings of the Japan Academy. 2010;Series B 86(6): 588-610. doi: 10.2183/pjab.86.588.
- 84. Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. European Journal of Pharmacology. 2010;626(1):49-56. doi: 0.1016/j.ejphar.2009.10.014.
- 85. Bodine AB. Fundemetals of Nutrition. Class notes. Clemson University. 2001.
- 86. Reddy VS, Bukke S, Dutt N, Rana P, Pandey AK. A systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer's disease: A metal meta-analysis (AMMA study-I). Journal of Trace Elements in Medicine and Biology. 2017;42: 68-75. doi:10.1016/j.jtemb.2017.04.005.
- 87. Varikasuvu SR, Prasad VS, Kothapalli J, Manne M. Brain selenium in Alzheimer’s disease (BRAIN SEAD Study): a systematic review and meta-analysis. Biological Trace Element Research. 2019;189(2): 361-369. doi: 10.1007/s12011-018-1492-x.
- 88. Zeisel SH. Choline: an important nutrient in brain development, liver function and carcinogenesis. Journal of the American College of Nutrition. 1992;11(54):473-481. doi: 10.1080/07315724.1992.10718251.
- 89. Wallace TC, Blusztajn JK, Caudill MA, Klatt KC, Zeisel SH. Choline: the neurocognitive essential nutrient of interest to obstetricians and gynecologists. Journal of Dietary Supplements. 2020;17(6): 733-752. doi: 10.1080/19390211.2019.1639875.
- 90. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009;2:270-278. doi: 10.4161/oxim.2.5.9498.
- 91. Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radical Biology and Medicine. 2004;37(11): 683-1693. doi: 10.1016/j.freeradbiomed.2004.08.002.
- 92. Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, Santos CN. Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports. 2017;7(1):11456. doi: 10.1038/s41598-017-11512-6.
- 93. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Dinan TG. The microbiota-gut-brain axis. Physiological Reviews. 2019;99:1877-2013. doi: 10.1152/physrev.00018.2018.
- 94. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research. 2017;179: 223-244. doi:10.1016/j.trsl.2016.10.002.
- 95. Filosa S, Di Meo F, Crispi S. Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research. 2018;13(12):2055. doi:10.4103/1673-5374.241429.
- 96. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology. 2021;19(4): 241-255. doi: 10.1038/s41579-020-00460-0.
- 97. Moloney RD, O’Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Frontiers in Psychiatry. 2015;6:15. doi: 10.3389/fpsyt.2015.00015.
- 98. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, De Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS One. 2010;5(5): e10667. doi: 10.1371/journal.pone.0010667.
- 99. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Ventura M.Diversity of bifidobacteria within the infant gut microbiota. PloS One. 20012;7(5): e36957. doi: 10.1371/journal.pone.0036957.
- 100. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sciences. 2021;264: 118627. doi:10.1016/j.lfs.2020.118627.
- 101. Foster JA, Neufeld KAM. Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences. 2013;36(5): 305-312. doi: 10.1016/j.tins.2013.01.005.
- 102. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. International Journal of Molecular Sciences. 2019;20(9): 2115. doi: 10.3390/ijms20092115.
- 103. Sanada K, Nakajima S, Kurokawa S, Barceló-Soler A, Ikuse D, Hirata A, Kishimoto T. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. Journal of Affective Disorders. 2020;266. 1-13. doi: 10.1016/j.jad.2020.01.102.
- 104. Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harbor Perspectives in Medicine. 2019;9(8): article 034199. doi: 10.1101/cshperspect.a034199.
- 105. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011;108(38): 16050-16055. doi:10.1073/pnas.1102999108.
- 106. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry. 2018; 44. doi: 10.3389/fpsyt.2018.00044.
- 107. Ounnas F, de Lorgeril M, Salen P, Laporte F, Calani L, Mena P, Demeilliers C. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect. Scientific Reports. 2017;7(1): 40162. doi: 10.1038/srep40162.
- 108. Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, Bartolomé B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International. 2015;Article ID 850902. doi:10.1155/2015/850902
- 109. Costantini L, Molinari R, Farinon B, Merendino N. Impact of omega-3 fatty acids on the gut microbiota. International Journal of Molecular Sciences. 2017;18(12): 2645. doi: 10.3390/ijms18122645.
- 110. Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of advanced glycation end product (AGE) formation and accumulation. Reactive Oxygen Species: Network Pharmacology and Therapeutic Applications. 2021;395-423.
- 111. Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochemistry International. 2017;103: 8-23. doi: 10.1016/j.neuint.2016.12.012.
- 112. Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Molecular Neurobiology. 2019;56: 1502-1516. doi: 10.1007/s12035-018-1157-y.
- 113. Li J, Liu Y, Wang L, Gu Z, Huan Z, Fu H, Liu Q. Hesperetin protects SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity via activation of NRF2/ARE signaling pathways. Tropical Journal of Pharmaceutical Research. 2020;19(6):1197-1201. doi: 10.4314/tjpr.v19i6.12.
- 114. Qi Y, Shang L, Liao Z, Su H, Jing H, Wu B, Jia Y. . Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metabolic Brain Disease. 2019;34: 257-266. doi: 10.1007/s11011-018-0348-6.
- 115. Dolati S, Babaloo Z, Ayromlou H, Ahmadi M, Rikhtegar R, Rostamzadeh D, Yousefi M. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. Journal of Neuroimmunology. 2019; 327: 15-21. doi: 10.1016/j.jneuroim.2019.01.007.
- 116. El Nebrisi E, Javed H, Ojha SK, Oz M, Shehab S. Neuroprotective effect of curcumin on the nigrostriatal pathway in a 6-hydroxydopmine-induced rat model of Parkinson’s disease is mediated by α7-nicotinic receptors. International Journal of Molecular Sciences,. 2020;21(19): 7329. doi: 10.3390/ijms21197329.
- 117. Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochemical Research. 2020;45:1130-1141. doi: 10.1007/s11064-020-02992-6.
- 118. Sun YP, Gu JF, Tan XB, Wang CF, Jia XB, Feng L, Liu JP. Curcumin inhibits advanced glycation end product induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal. Molecular Medicine Reports. 2016;13(2): 1475-1486. doi: 10.3892/mmr.2015.4725.
- 119. Wang P, Gong Q, Hu J, Li X, Zhang X. Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: applications in the ROS-related diseases. Journal of Medicinal Chemistry. 2020;64(1):298-325. doi: 10.1021/acs.jmedchem.0c01704.
- 120. Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Scientific Reports. 2016;6(1): 31450. doi: 10.1038/srep31450.
- 121. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules. 2013;18(8): 9949-9965. doi: 10.3390/molecules18089949.
- 122. Zhou Q, Cheng KW, Gong J, Li, ET, Wang M. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. Biochemical Pharmacology. 2019;166:231-241 doi:10.1016/j.bcp.2019.05.027.
- 123. Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKA, Viana GS. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evidence-Based Complementary and Alternative Medicine. 2015;article ID 161092. doi:10.1155/2015/161092.
- 124. Chen SQ, Wang ZS, Ma YX, Zhang W, Lu JL, Liang YR, Zheng XQ. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules. 2018;23(3):512. doi: 10.3390/molecules23030512.
- 125. Zhang ZX, Li YB, Zhao RP. Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochemical Research. 2017; 42: 468-480. doi:10.1007/s11064-016-2093-8.
- 126. Assunção M, Santos-Marques MJ, Carvalho F, Andrade JP. Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival. Free Radical Biology and Medicine. 2010;48(6).:831-838. doi: 10.1016/j.freeradbiomed.2010.01.003.
- 127. Xu Y, Zhang JJ, Xiong L, Zhang L, Sun D, Liu H. Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress. The Journal of Nutritional Biochemistry. 2010; 21(8): 741-748. doi: 10.1016/j.jnutbio.2009.05.002.
- 128. Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Ruan DY. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology. 2008;249(1): 45-54. doi: 10.1016/j.tox.2008.04.006.
- 129. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M,Kim MO. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Molecular Neurobiology. 2018; 55: 6076-6093. doi: 10.1007/s12035-017-0798-6.
- 130. Li P, Feng D, Yang D, Li X, Sun J, Wang G, Bai W. Protective effects of anthocyanins on neurodegenerative diseases. Trends in Food Science & Technology. 2021;117: 205-217. doi: 10.1016/j.tifs.2021.05.005.
- 131. Suttisansanee U. Charoenkiatkul S, Jongruaysup B, Tabtimsri S, Siriwan D, Temviriyanukul P. Mulberry fruit cultivar ‘Chiang Mai’prevents beta-amyloid toxicity in PC12 neuronal cells and in a Drosophila model of Alzheimer’s disease. Molecules. 2020;25(8): 1837. doi: 10.3390/molecules25081837.
- 132. Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases Critical Reviews in Food Science and Nutrition. 2023;63(29):9816-9842. doi: 10.1080/10408398.2022.2076064.
- 133. Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, Naz N. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. Plos One. 2020;15(1): e0227631. doi: 10.1371/journal.pone.0227631.
- 134. Mani S, Sekar S, Barathidasan R, Manivasagam T, Thenmozhi AJ, Sevanan M, Sakharkar MK. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotoxicity Research. 2018;33:656-670. doi:10.1007/s12640-018-9869-3.
- 135. Nakajima A, Aoyama Y, Shin EJ, Nam Y, Kim HC, Nagai T, Yamada K. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer's disease (3XTg-AD). Behavioural Brain Research. 2015;289 69-77, doi: 10.1016/j.bbr.2015.04.028.
- 136. Shamsi A, Shahwan M, Khan MS, Husain FM, Alhumaydhi FA, Aljohani AS, Islam A. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega. 2021;6(11): 7922-7930. doi: 10.1021/acsomega.1c00527.
- 137. Paula PC, Angelica Maria SG, Luis CH, Gloria Patricia CG. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules. 2019;24(12): 2287. doi: 10.3390/molecules24122287
- 138. Nazif NN, Khosravi M, Ahmadi R, Bananej M, Ahmad M. Neuroprotection Effect of Quercetin on TNF-α Levels and Gene Expression of Caspase 3 in MPTP-Induced Male NMRI Mice, Iranian Red Crescent Medical Journal. 2019;21(12): e94883, doi: 10.5812/ircmj.94883.
- 139. Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. Journal of the Neurological Sciences. 2007;262(1-2):77-84. doi: 10.1016/j.jns.2007.06.028.
- 140. Heitman E, Ingram DK. Cognitive and neuroprotective effects of chlorogenic acid Nutritional Neuroscience. 2017;20(1): 32-39. doi: 10.1179/1476830514Y.0000000146.
- 141. Zhu H, Poojary MM, Andersen ML, Lund MN. The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal. Food Chemistry. 2020;319: 126500. doi: 10.1016/j.foodchem.2020.126500.
- 142. Zhao Z, Xue F, Gu Y, Han J, Jia Y, Ye K, Zhang Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7, 8-dihydroxyflavone in female mice. Molecular Metabolism. 2021;45:101149. doi:10.1016/j.molmet.2020.101149.
- 143. Nie S, Ma K, Sun M, Lee M, Tan Y, Chen G, Cao X. 7, 8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinson’s Disease. 2019;Article ID 9193534. doi: 10.1155/2019/9193534.
- 144. Tamtaji OR, Taghizadeh M, Kakhaki RD, Kouchaki E, Bahmani F, Borzabadi S, Asemi Z. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clinical Nutrition. 2019;38(3):1031-1035. doi: 10.1016/j.clnu.2018.05.018.
- 145. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Salami M. (. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience. 2016;8: 256. doi: 10.3389/fnagi.2016.00256.
- 146. Rucklidge J.J. Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression. Adv Mind Body Med. 2013;27(3): 14-18.
- 147. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. European Journal of Clinical Nutrition. 2007;61(3):355-361. doi: 10.1038/sj.ejcn.1602546.
- 148. Nishida K, Sawada D, Kawai T, Kuwano Y, Fujiwara S, Rokutan K. Para‐psychobiotic Lactobacillus gasseri CP2305 ameliorates stress‐related symptoms and sleep quality. Journal of Applied Microbiology. 2017;123(6): 1561-1570. doi: 10.1111/jam.13594.
- 149. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Cazaubiel JM. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition. 2011;105(5): 755-764. doi: 10.1017/S0007114510004319.
- 150. Rao AV, Bested A C, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathogens. 2009;1(1):1-6. doi:10.1186/1757-4749-1-6.
- 151. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451-1463. doi: 10.1016/j.cell.2013.11.024.
- 152. Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice. Neurogastroenterology & Motility. 2014;26(11): 1615-1627. doi: 10.1111/nmo.12427.
- 153. Desbonnet L, Garrett L, Clark G, Kiely B, Cryan JF, Dinan T. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience,. 2010;170(4)Ç 1179-1188. doi: 10.1016/j.neuroscience.2010.08.005.
- 154. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2): 599-609.doi: 10.1053/j.gastro.2011.04.052.
- 155. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Clarke G. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry. 2016;6(11): e939-e939. doi:10.1038/tp.2016.191.
- 156. Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Science China Life Sciences. 2014;57: 327-335. doi: 10.1007/s11427-014-4615-4.
- 157. Wang H, Sun Y, Xin J, Zhang T, Sun N, Ni X, Bai Y. (Lactobacillus johnsonii BS15 prevents psychological stress–induced memory dysfunction in mice by modulating the Gut-Brain Axis. Frontiers in Microbiology. 2020;11: 1941. doi: 10.3389/fmicb.2020.01941.
- 158. Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Tsai YC. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Research. 2016;1631: 1-12. doi: 10.1016/j.brainres.2015.11.018.
- 159. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neurosciences. 2016;39(11): 763-781. doi: 10.1016/j.tins.2016.09.002.
- 160. McVey Neufeld KA, Kay S, Bienenstock J. Mouse strain affects behavioral and neuroendocrine stress responses following administration of probiotic Lactobacillus rhamnosus JB-1 or traditional antidepressant fluoxetine. Frontiers in Neuroscience. 2018;12: 294. doi: 10.3389/fnins.2018.00294.
- 161. Cheng LH, Chou PY, Hou AT, Huang CL, Shiu WL, Wang S. (. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in D-galactose-induced aging mice. Food & Function. 2022;13(9): 5240-5251. doi: 10.1039/D2FO00165A.
- 162. Deepika Shukla, AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Developmental Psychobiology. 2023; 65(5): e22404 doi: 10.1002/dev.22404.