Araştırma Makalesi
BibTex RIS Kaynak Göster

Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi

Yıl 2021, Cilt: 4 Sayı: 1, 65 - 72, 30.06.2021

Öz

Biyoaktif peptidler 2-20 aminoasit kalıntısı içeren düşük protein ağırlıklı ve biyolojik olarak çeşitli aktivitelere sahip olan peptidlerdir. Biyoaktif peptidlerin oluşumu, proteinlerin enzimatik parçalanması ile de gerçekleşebilmektedir. Et ve et ürünleri yüksek protein içerikleri ile biyoaktif peptidler için iyi birer kaynaktırlar. Kesim sonrası endojenik enzimlerin aktivitesiyle birlikte ette başlayan proteolitik aktivite, fermente ürünlerde olgunlaştırma sürecinde mikrobiyal enzim aktivitesiyle daha ileri aşamalara taşınmaktadır. Et ürünlerinin fermantasyonunda birçok mikroorganizma yer alabilmektedir. En yaygın rastlanılanlar laktik asit bakterileri ve katalaz pozitif koklar iken, bu süreçte mantarların da etkili olduğu ürünlerin varlığı bilinmektedir.
Biyolojik olarak antikanserojenik, antihipertansif, antimikrobiyal, ACE inhibitörü, opioid antogonistik aktivitelerden bir veya birkaçını gösterebilen et kaynaklı birçok biyoaktif peptid varlığı bilinmektedir. Bu nedenle bu derlemede, et kaynaklı biyoaktif peptitlerin biyolojik aktiviteleri ve et ürünlerinin eldesin de biyokimyasal dönüşümleri baskın olduğu olgunlaştırma sürecinin biyoaktif peptit varlığı üzerine etkisini inceleyen çalışmalar derlenmiştir. Sonuç olarak, konu ile ilgili çalışmalar değerlendirildiğinde olgunlaştırma sürecinin et ürünlerinde biyoaktif peptit düzeyini etkilediği ve ürün bileşimi, starter kültür ve olgunlaştırma koşullarının bu durumu etkileyen değişkenler olduğu söylenebilir.

Kaynakça

  • [1] A. Verplaetse, "Influence of raw meat properties and processing technology on aroma quality of raw fermented meat products," in International Congress of Meat Science and Technology, Location: The Hague, 1994.
  • [2] I. M. Chernukha, N. Mashentseva, D. A. Afanasev, and N. Vostrikova, "Biologically active peptides of meat and meat product proteins: a review. Part 2. Functionality of meat bioactive peptides," Theory and practice of meat processing, vol. 5, pp. 12-19, 2020. [3] V. Vermeirssen, J. Van Camp, and W. Verstraete, "Bioavailability of angiotensin I converting enzyme inhibitory peptides," British Journal of Nutrition, vol. 92, pp. 357-366, 2004.
  • [4] K. Erdmann, B. W. Cheung, and H. Schröder, "The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease," The Journal of nutritional biochemistry, vol. 19, pp. 643-654, 2008.
  • [5] J. T. Ryan, R. P. Ross, D. Bolton, G. F. Fitzgerald, and C. Stanton, "Bioactive peptides from muscle sources: meat and fish," Nutrients, vol. 3, pp. 765-791, 2011.
  • [6] H. Korhonen and A. Pihlanto, "Bioactive peptides: Production and functionality," International Dairy Journal, vol. 16, pp. 945-960, 2006/09/01/ 2006.
  • [7] R. Palamutoğlu and C. Sariçoban, "The effect of the addition of encapsulated collagen hydrolysate on some quality characteristics of sucuk," Korean journal for food science of animal resources, vol. 36, p. 807, 2016.
  • [8] O. Diaz, M. Fernandez, G. D. G. De Fernando, L. de la Hoz, and J. A. Ordoñez, "Proteolysis in dry fermented sausages: the effect of selected exogenous proteases," Meat Science, vol. 46, pp. 115-128, 1997.
  • [9] F. Toldra, "Proteolysis and lipolysis in flavour development of dry-cured meat products," Meat science, vol. 49, pp. S101-S110, 1998.
  • [10] T. Kato, T. Matsuda, T. Tahara, M. Sugimoto, Y. Sato, and R. Nakamura, "Effects of meat-conditioning and lactic fermentation on pork muscle protein degradation," Bioscience, biotechnology, and biochemistry, vol. 58, pp. 408-410, 1994.
  • [11] K. Candogan, F. B. Wardlaw, and J. C. Acton, "Effect of starter culture on proteolytic changes during processing of fermented beef sausages," Food Chemistry, vol. 116, pp. 731-737, 2009/10/01/ 2009.
  • [12] A. De Ketelaere, D. Demeyer, P. Vandekerckhove, and P. Vervaeke, "Stoichiometry of carbohydrate fermentation during dry sausage ripening," Journal of Food Science, vol. 39, pp. 297-300, 1974.
  • [13] G. Johansson, J.-L. Berdagué, M. Larsson, N. Tran, and E. Borch, "Lipolysis, proteolysis and formation of volatile components during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcus xylosus as starter cultures," Meat Science, vol. 38, pp. 203-218, 1994/01/01/ 1994.
  • [14] K. Arihara, "Strategies for designing novel functional meat products," Meat science, vol. 74, pp. 219-229, 2006.
  • [15] C. C. Udenigwe and R. E. Aluko, "Food protein‐derived bioactive peptides: production, processing, and potential health benefits," Journal of food science, vol. 77, pp. R11-R24, 2012.
  • [16] E. Escudero, L. Mora, P. D. Fraser, M.-C. Aristoy, and F. Toldrá, "Identification of novel antioxidant peptides generated in Spanish dry-cured ham," Food Chemistry, vol. 138, pp. 1282-1288, 2013.
  • [17] G. Grimble, "The significance of peptides in clinical nutrition," Annual review of nutrition, vol. 14, pp. 419-447, 1994.
  • [18] J. Stadnik and P. Kęska, "Meat and fermented meat products as a source of bioactive peptides," Acta Scientiarum Polonorum Technologia Alimentaria, vol. 14, pp. 181-190, 2015.
  • [19] W. Sun, H. Zhao, Q. Zhao, M. Zhao, B. Yang, N. Wu, et al., "Structural characteristics of peptides extracted from Cantonese sausage during drying and their antioxidant activities," Innovative Food Science & Emerging Technologies, vol. 10, pp. 558-563, 2009.
  • [20] J.-s. Wang, M.-m. Zhao, Q.-z. Zhao, and Y.-m. Jiang, "Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems," Food chemistry, vol. 101, pp. 1658-1663, 2007.
  • [21] L.-S. Wang, J.-C. Huang, Y.-L. Chen, M. Huang, and G.-H. Zhou, "Identification and characterization of antioxidant peptides from enzymatic hydrolysates of duck meat," Journal of agricultural and food chemistry, vol. 63, pp. 3437-3444, 2015.
  • [22] A. Jang, C. Jo, K.-S. Kang, and M. Lee, "Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides," Food Chemistry, vol. 107, pp. 327-336, 2008.
  • [23] L.-Y. Su, H.-Y. Xin, Y.-L. Liu, J.-L. Zhang, H.-W. Xin, and X.-L. Su, "Anticancer bioactive peptide (ACBP) inhibits gastric cancer cells by upregulating growth arrest and DNA damage-inducible gene 45A (GADD45A)," Tumor Biology, vol. 35, pp. 10051-10056, 2014.
  • [24] A. Zambrowicz, M. Timmer, A. Polanowski, G. Lubec, and T. Trziszka, "Manufacturing of peptides exhibiting biological activity," Amino acids, vol. 44, pp. 315-320, 2013.
  • [25] S.-K. Kim and I. Wijesekara, "Development and biological activities of marine-derived bioactive peptides: A review," Journal of Functional foods, vol. 2, pp. 1-9, 2010.
  • [26] B. H. Sarmadi and A. Ismail, "Antioxidative peptides from food proteins: a review," Peptides, vol. 31, pp. 1949-1956, 2010.
  • [27] R. Song, R.-B. Wei, H.-Y. Luo, and D.-F. Wang, "Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty)," Molecules, vol. 17, pp. 2980-2991, 2012.
  • [28] N. Nedjar-Arroume, V. Dubois-Delval, K. Miloudi, R. Daoud, F. Krier, M. Kouach, et al., "Isolation and characterization of four antibacterial peptides from bovine hemoglobin," Peptides, vol. 27, pp. 2082-2089, 2006.
  • [29] P. Castellano, M.-C. Aristoy, M. Á. Sentandreu, G. Vignolo, and F. Toldrá, "Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus," Journal of proteomics, vol. 89, pp. 183-190, 2013.
  • [30] M. Ž. Baltić, M. Bošković, J. Ivanović, J. Janjić, M. Dokmanović, R. Marković, et al., "Bioactive peptides from meat and their influence on human health," Tehnologija mesa, vol. 55, pp. 8-21, 2014.
  • [31] A. Bougatef, N. Nedjar-Arroume, L. Manni, R. Ravallec, A. Barkia, D. Guillochon, et al., "Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins," Food chemistry, vol. 118, pp. 559-565, 2010.
  • [32] T. Lafarga and M. Hayes, "Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients," Meat science, vol. 98, pp. 227-239, 2014.
  • [33] K. Katayama, H. E. Anggraeni, T. Mori, A. M. Ahhmed, S. Kawahara, M. Sugiyama, et al., "Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats," Journal of Agricultural and Food Chemistry, vol. 56, pp. 355-360, 2008.
  • [34] P. Banerjee and C. Shanthi, "Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties," Process biochemistry, vol. 47, pp. 2335-2346, 2012.
  • [35] A. Saiga, S. Tanabe, and T. Nishimura, "Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment," Journal of agricultural and food chemistry, vol. 51, pp. 3661-3667, 2003.
  • [36] R. Di Bernardini, A. M. Mullen, D. Bolton, J. Kerry, E. O'Neill, and M. Hayes, "Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions," Meat science, vol. 90, pp. 226-235, 2012.
  • [37] A. Şimşek and B. Kılıç, "ET KAYNAKLI BİYOAKTİF PEPTİTLER VE FONKSİYONEL ÖZELLİKLERİ," Gıda, vol. 41, pp. 267-274, 2016.
  • [38] M. Gallego, L. Mora, E. Escudero, and F. Toldrá, "Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages," International journal of food microbiology, vol. 276, pp. 71-78, 2018.
  • [39] A. Pihlanto and H. Korhonen, "Bioactive peptides and proteins," Advances in food and nutrition research, vol. 47, pp. 175-276, 2003.
  • [40] P. Antila, I. Paakkari, A. Järvinen, M. Mattila, M. Laukkanen, A. Pihlanto-Leppälä, et al., "Opioid peptides derived from in-vitro proteolysis of bovine whey proteins," International Dairy Journal, vol. 1, pp. 215-229, 1991.
  • [41] A. Pihlanto-Leppälä, P. Antila, P. Mäntsälä, and J. Hellman, "Opioid peptides produced by in-vitro proteolysis of bovine caseins," International Dairy Journal, vol. 4, pp. 291-301, 1994. [42] J. C. Froehlich, "Opioid peptides," Alcohol health and research world, vol. 21, p. 132, 1997.
  • [43] D. Ianzer, K. Konno, C. H. Xavier, R. Stöcklin, R. A. S. Santos, A. C. M. de Camargo, et al., "Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo," Peptides, vol. 27, pp. 2957-2966, 2006.
  • [44] I. Gomes, C. S. Dale, K. Casten, M. A. Geigner, F. C. Gozzo, E. S. Ferro, et al., "Hemoglobin-derived peptides as novel type of bioactive signaling molecules," The AAPS journal, vol. 12, pp. 658-669, 2010.
  • [45] K. Molly, D. Demeyer, G. Johansson, M. Raemaekers, M. Ghistelinck, and I. Geenen, "The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project," Food Chemistry, vol. 59, pp. 539-545, 1997/08/01/ 1997.
  • [46] H. Korhonen, A. Pihlanto-Leppäla, P. Rantamäki, and T. Tupasela, "Impact of processing on bioactive proteins and peptides," Trends in Food Science & Technology, vol. 9, pp. 307-319, 1998.
  • [47] C. Leygonie, T. J. Britz, and L. C. Hoffman, "Impact of freezing and thawing on the quality of meat," Meat science, vol. 91, pp. 93-98, 2012.
  • [48] H. Kato, "Flavor chemistry-Trends and development," in ACS Symposium Series 388, 1989, pp. 158-174.
  • [49] C. Bauchart, D. Rémond, C. Chambon, P. Patureau Mirand, I. Savary-Auzeloux, C. Reynès, et al., "Small peptides (<5kDa) found in ready-to-eat beef meat," Meat Science, vol. 74, pp. 658-666, 2006/12/01/ 2006.
  • [50] Ž. Vaštag, L. Popović, S. Popović, L. Petrović, and D. Peričin, "Antioxidant and angiotensin-I converting enzyme inhibitory activity in the water-soluble protein extract from Petrovac Sausage (Petrovská Kolbása)," Food control, vol. 21, pp. 1298-1302, 2010.
  • [51] F.-K. Lücke, "Fermented meat products," Food research international, vol. 27, pp. 299-307, 1994.
  • [52] C. Waade and L. Stahnke, "Dried sausages fermented with staphylococcus xylosus at different temperatures and with different ingredient levels. Part IV. Amino acid profile," Meat science, vol. 46, pp. 101-114, 1997.
  • [53] S. Fadda, G. Vignolo, A. P. Holgado, and G. Oliver, "Proteolytic activity of Lactobacillus strains isolated from dryfermented sausages on muscle sarcoplasmic proteins," Meat Science, vol. 49, pp. 11-18, 1998.
  • [54] A. Toledano, R. Jordano, C. López, and L. Medina, "Proteolytic activity of lactic acid bacteria strains and fungal biota for potential use as starter cultures in dry-cured ham," Journal of food protection, vol. 74, pp. 826-829, 2011.
  • [55] G. D. G. de Fernando and P. F. Fox, "Study of proteolysis during the processing of a dry fermented pork sausage," Meat Science, vol. 30, pp. 367-383, 1991.
  • [56] M. C. Hughes, J. P. Kerry, E. K. Arendt, P. M. Kenneally, P. L. H. McSweeney, and E. E. O'Neill, "Characterization of proteolysis during the ripening of semi-dry fermented sausages," Meat Science, vol. 62, pp. 205-216, 2002/10/01/ 2002.
  • [57] L. Mora, E. Escudero, and F. Toldrá, "Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity," Food Research International, vol. 89, pp. 638-646, 2016/11/01/ 2016.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme
Yazarlar

Habibe Memiş 0000-0002-2696-7493

Aybike Kamiloğlu 0000-0002-6756-0331

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 1

Kaynak Göster

APA Memiş, H., & Kamiloğlu, A. (2021). Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi. Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(1), 65-72.
AMA Memiş H, Kamiloğlu A. Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi. Bayburt Üniversitesi Fen Bilimleri Dergisi. Haziran 2021;4(1):65-72.
Chicago Memiş, Habibe, ve Aybike Kamiloğlu. “Et Ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin Biyoaktif Peptit varlığına Etkisi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4, sy. 1 (Haziran 2021): 65-72.
EndNote Memiş H, Kamiloğlu A (01 Haziran 2021) Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi. Bayburt Üniversitesi Fen Bilimleri Dergisi 4 1 65–72.
IEEE H. Memiş ve A. Kamiloğlu, “Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, ss. 65–72, 2021.
ISNAD Memiş, Habibe - Kamiloğlu, Aybike. “Et Ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin Biyoaktif Peptit varlığına Etkisi”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4/1 (Haziran 2021), 65-72.
JAMA Memiş H, Kamiloğlu A. Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4:65–72.
MLA Memiş, Habibe ve Aybike Kamiloğlu. “Et Ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin Biyoaktif Peptit varlığına Etkisi”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, 2021, ss. 65-72.
Vancouver Memiş H, Kamiloğlu A. Et ve Et Ürünlerinde Biyoaktif Peptitler: Olgunlaştırma sürecinin biyoaktif peptit varlığına etkisi. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4(1):65-72.

Taranılan Dizinler