BibTex RIS Kaynak Göster

An Examination of Turkish Middle School Students’ Proportional Reasoning

Yıl 2016, Cilt: 33 Sayı: 1, 63 - 85, 01.01.2016

Öz

This study examined if middle school students were able to differentiate proportional and non-proportional situations, and whether the use of integer or non-integer ratios in proportional and non-proportional problems affected students’ solution strategies. The analyses showed that students’ success rates among the mentioned problem types significantly differed. They also tended to prefer the proportional solution method in non-proportional situations. In addition, in non-proportional problems, use of non-integer ratios evoked additive strategies while students preferred proportional solution methods in problems with integer ratios. However, contrary to the findings reported in the literature, students’ use of erroneous strategies was not significantly affected by the use of integer or non-integer ratios in proportional problems.

Kaynakça

  • Akkuş-Çıkla, O., & Duatepe, A. (2002). İlköğretim matematik öğretmen adaylarının orantısal akıl yürütme becerileri üzerine niteliksel bir çalışma. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23, 32-40.
  • Behr, M., & Harel, G. (1990). Understanding the multiplicative structure. In G. Booker, P. Cobb, & T.N. de Merldicutti (Eds.) Proceedings of the PME XIV Conference, Volume III (pp. 27-34).
  • Boyer, T.W., Levine, S.C. & Huttenlocher, J. (2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478-1490.
  • Capon, N., & Kuhn, K. (1979). Logical reasoning in the supermarket: Adult females’ use of a proportional strategy in an everyday context. Developmental Psychology, 15, 450-452.
  • Çeken, R., & Ayas, C. (2010). İlköğretim fen ve teknoloji ile sosyal bilgiler ders programlarında oran ve orantı. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 9(3), 669-679.
  • Çelik, A., & Özdemir, E., Y. (2011). İlkögretim ögrencilerinin orantısal akıl yürütme becerileri ile oran-orantı problemi kurma becerileri arasındaki ilişki. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 30, 1-11.
  • Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in grades 1-5. Journal for Research in Mathematics Education, 27(1), 41-51.
  • Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: Research implications, In D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159-178), New York: Macmillan.
  • Duatepe, A., Akkuş-Çıkla, O. ve Kayhan, M. (2005). Orantısal akıl yürütme gerektiren sorularda öğrencilerin kullandıkları çözüm stratejilerinin soru türlerine göre değişiminin incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28, 73-81.
  • Fernández , C., Llinares, S., Van Dooren, W., De Bock, D., & Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 27 (3), 421-438.
  • Fernández, C., Llinares, S., & Valls, J. (2008). Implicative analysis of strategies in solving proportional and non-proportional problems. Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 1-8). Morelia, Mexico: Universidad Michoacana de San Nicolás de Hidalgo.
  • Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., & Verschaffel, L. (2010). How do proportional and additive methods develop along primary and secondary school? In M.M.F. Pinto, & T.F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 353-360). Belo Horizonte, Brazil: PME.
  • Field, A. P. (2009). Discovering statistics using SPSS. London, England: SAGE. Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education, 18(1), 37-45.
  • Kaplan, A., İşleyen, T., & Öztürk, M., (2011). 6. sınıf oran orantı konusunda kavram yanılgıları. Kastamonu Eğitim Dergisi, 19 (3), 953-968.
  • Lamon, S. (1994). Ratio and proportion: Cognitive foundations in unitizing and norming. In G. Harel and J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 89-120). Albany: State University of New York Press.
  • Langrall, C., W., & Swafford, J., O. (2000). Three balloons for two dollars: Developing proportional reasoning. Mathematics Teaching in the Middle School, 6 (4), 254-261.
  • Lannin, J., K., Barker, D., D., & Townsend, B., E. (2007). How students view the general nature of their errors. Educational Studies in Mathematics, 66 (1), 43-59.
  • Lawton, C. A. (1993). Contextual factors affecting errors in proportional reasoning. Journal for Research in Mathematics Education, 24 (5), 460-466.
  • Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In J. Hiebert & M. Behr, (Eds.), Number concepts and operations in the middle grades (pp. 93–118). Reston, VA: National Council of Teachers of Mathematics.
  • Lo, J., & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of a fifth grader. Journal for Research in Mathematics Education, 28(2), 216-236.
  • Lobato, J. E., Ellis, A. B, Charles, R. I., & Zbiek, R. M. (2010). Developing essential understanding of ratios, proportions, and proportional reasoning for teaching mathematics in Grades 6-8. Reston, VA: National Council of Teachers of Mathematics.
  • Milli Eğitim Bakanlığı (MEB). (2009). İlköğretim matematik dersi 1-5. sınıflar öğretim programı, Talim Terbiye Kurulu Başkanlığı, Ankara.
  • Milli Eğitim Bakanlığı (MEB). (2011). İlköğretim 5. sınıflar matematik ders kitabı. Devlet Kitapları, Özgün Matbaacılık, Ankara.
  • Modestou, M., & Gagatsis, A. (2007). Students’ improper proportional reasoning: A result of the epistemological obstacle of “linearity.” Educational Psychology, 27(1), 75-92.
  • Modestou, M., & Gagatsis, A. (2008). Proportional reasoning in elementary and secondary education: Moving beyond the percentages. In A. Gagatsis (Ed.), Research in mathematics education (pp. 147-162). Nicosia: University of Cyprus.
  • Modestou, M., & Gagatsis, A. (2010). Cognitive and metacognitive aspects of proportional reasoning. Mathematical Thinking and Learning, 12(1), 36-53.
  • Murphy, C. (2012). The role of subject knowledge in primary prospective teachers’ approaches to teaching the topic of area. Journal of Mathematics Teacher Education, 15(3), 187-206.
  • National Council of Teachers of Mathematics (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • Perso, T. (1992). Making the most of errors. Australian Mathematics Teacher, 48(2), 12-14.
  • Singh, P. (2000). Understanding the concepts of proportion and ratio constructed by two six grade students. Educational Studies in Mathematics, 43, 271-292.
  • Sowder, L. (1988). Children’s solutions of story problems. Journal of Mathematical Behavior, 7, 227–238.
  • Sowder, J., Armstrong, B., Lamon, S., Simon, M., Sowder, L., & Thompson, A. (1998). Education teachers to teach multiplicative structures in the middle grades. Journal of Mathematics Teacher Education, 1, 127-155.
  • Spinillo, A. G., & Bryant, P. (1999). Proportional reasoning in young children: Part–part comparisons about continuous and discontinuous quantity. Mathematical Cognition, 5, 181–197.
  • Stavy, R, & Tirosh, D. (1996). Intuitive rules in science and mathematics: the case of ‘more of A ‐‐ more of B’. International Journal of Science Education, 18(6), 653-667.
  • Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, 181-204.
  • Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D., & Verschaffel, L. (2003). The illusion of linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 53, 113–138.
  • Van Dooren, W., De Bock, D., Gillard, E., & Verschaffel, L. (2009). Add? or multiply? A study on the development of primary school students’ proportional reasoning skills. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, C. (Eds.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, Thessaloniki, Greece: PME.
  • Van Dooren,W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2004). Remedying secondary school students’ illusion of linearity: a teaching experiment aiming at conceptual change. Learning and Instruction, 14, 485–501.
  • Van Dooren,W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57–86.
  • Van Dooren, W., De Bock, D., Janssens, D. & Verschaffel, L. (2007). Pupils' over-reliance on linearity: A scholastic effect? British Journal of Educational Psychology, 77, 307–321.
  • Van Dooren, W., De Bock, D., Verschaffel, L. (2010). From addition to multiplication … and back: The development of students' additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 360-381.
  • Van Dooren, W., De Bock, D., Vleugels, K., Verschaffel, L. (2010). Just answering … or thinking? Contrasting pupils’ solutions and classifications of missing-value word problems. Mathematical Thinking and Learning, 12(1), 20-35.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Bölüm Özgün Çalışma
Yazarlar

Şebnem Atabaş Bu kişi benim

Diler Öner

Yayımlanma Tarihi 1 Ocak 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 33 Sayı: 1

Kaynak Göster

APA Atabaş, Ş., & Öner, D. (2016). An Examination of Turkish Middle School Students’ Proportional Reasoning. Bogazici University Journal of Education, 33(1), 63-85.