Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges

Yıl 2021, Cilt: 165 Sayı: 165, 53 - 62, 19.08.2021
https://doi.org/10.19111/bulletinofmre.746858

Öz


This paper compares effectiveness of the different approaches of computing the tilt angle of the horizontal gradient amplitude and tilt angle of the analytic signal amplitude such as use of direct expression and frequency domain technique (also called k - function) in terms of their accuracy on the detection of the edges of magnetic and gravity sources. These approaches were performed on both synthetic magnetic and gravity data where the frequency domain technique shows improvements in delineation of the actual edges of the sources compared to the direct expression. Additionally, real magnetic data from Zhurihe (Northeast China), and real gravity data from Tuan Giao (Northwest Vietnam) was considered and the obtained results from applying the different approaches were compared with known geological structures. The results show that the boundaries detected from the use of the frequency domain technique are in accord with the known geological structures.

Teşekkür

The authors record with pleasure their sincere thanks to the editor and the reviewers for their very constructive suggestions to improve the paper. This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.20.13.

Kaynakça

  • Beiki, M. 2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75 (6), 159-174.
  • Blakely, R. J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge. Cambridge University Press, Cambridge, 326.
  • Cella, F., Fedi, M., Florio, G. 2009. Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting 57, 543-557.
  • Cooper, G. R. J. 2014a. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics 79, J55-J60.
  • Cooper, G. R. J. 2014b. The automatic determination of the location and depth of contacts and dykes from aeromagnetic data. Pure and Applied Geophysics 171(9), 2417-2423.
  • Cooper, G. R. J., Cowan, D. R. 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences 32, 1585-1591.
  • Cooper, G. R. J., Cowan, D. R. 2008. Edge enhancement of potential - field data using normalized statistics. Geophysics 73(3), H1-H4.
  • Cordell, L., Grauch, V. J. S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, in Hinze, William J. (Ed.), The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, Tulsa, Oklahoma, 1985, 181-197.
  • Duan, B. V., Duong, N. A. 2017. The relation between fault movement potential and seismic activity of major faults in Northwestern Vietnam. Vietnam Journal of Earth Sciences 39(3), 240-255.
  • Eldosouky, A. M. 2019. Aeromagnetic data for mapping geologic contacts at Samr El-Qaa area, North Eastern Desert, Egypt. Arabian Journal of Geosciences 12, 2.
  • Evjen, H. M. 1936. The place of the vertical gradient in gravitational interpretations. Geophysics 1(1), 127-136. Fedi, M. 2002. Multiscale derivative analysis: A new tool to enhance detection of gravity source boundaries at various scales. Geophysical Research Letters 29(2), 1029.
  • Fedi, M., Florio, G. 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting 49(1), 40-58.
  • Ferreira, F. J. F., de Souza, J., de Bongiolo, A. B. E. S., de Castro, L. G. 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78(3), J33-J41.
  • Florio, G., Fedi, M., Pastek, R. 2006. On the application of Euler deconvolution to the analytic signal. Geophysics 71(6), L87-L93.
  • Hsu, S. K., Coppense, D., Shyu, C. T. 1996. High - resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics 61, 1947-1957.
  • Li, L., Ma, G., Du, X. 2012. Edge Detection in Potential-Field Data by Enhanced Mathematical Morphology Filter. Pure and Applied Geophysics 170(4), 645-653
  • Ma, G., Li, L. 2012. Edge detection in potential fields with the normalized total horizontal derivative. Computers and Geosciences 41, 83-87.
  • Ma. G., Liu, C., Li, L. 2014. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. Journal of Applied Geophysics 108, 12-18.
  • Miller, H. G., Singh, V. 1994. Potential field tilt a new concept for location of potential field sources. Journal of Applied Geophysics 32, 213-217.
  • Oruç, B. 2011. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı - Central Anatolian Region, Turkey. Pure and Applied Geophysics 168, 1769-1780.
  • Pham, L.T., Oksum, E., Do, T. D., Le - Huy, M. 2018a. New method for edges detection of magnetic sources using logistic function. Geofizichesky Zhurnal 40(6), 127-135.
  • Pham L. T., Le-Huy M., Oksum, E., Do T. D. 2018b. Determination of maximum tilt angle from analytic signal amplitude of magnetic data by the curvature - based method. Vietnam Journal of Earth Sciences 40(4), 354-366.
  • Pham, L. T., Oksum, E., Do, T. D. 2019a. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica 54, 143-155.
  • Pham, L. T., Oksum, E., Do, T. D., Le - Huy, M., Vu, M.D., Nguyen, V.D. 2019b. LAS: a combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data. Contributions to Geophysics and Geodesy 49(4), 425-440.
  • Rajagopalan, S., Milligan, P. 1995. Image enhancement of aeromagnetic data using automatic gain control. Exploration Geophysics 25, 173-178.
  • Roest, W. R. J., Verhoef, J, Pilkington, M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1), 116-125.
  • Roger, F., Maluski, H., Lepvrier, C., Tich, V. V., Paquette, J. L. 2012. LA - ICPMS zircons U / Pb dating of Permo - Triassic and Cretaceous magmatisms in Northern Vietnam - geodynamical implications. Journal of Asian Earth Sciences 48, 72-82. Roger, F., Jolivet, M., Maluski, H., Respaut, J. P., Münch, P., Paquette, J. L., Vu - Van, T., Vu - Van, V. 2014. Emplacement and cooling of the Dien Bien Phu granitic complex: implications for the tectonic evolution of the Dien Bien Phu fault (Truong Son Belt, NW Vietnam). Gondwana Research 26(2), 785-801.
  • Wijns, C., Perez, C., Kowalczyk, P. 2005. Theta map: edge detection in magnetic data. Geophysics 70, 39-43. Yan, T. J., Wu, Y. G., Yuan, Y., Chen, L. N. 2016. Edge detection of potential field data using an enhanced analytic signal tilt angle. Chinese Journal of Geophysics 59(4), 341-349.
  • Yao, Y., Huang, D., Yu, X., Chai, B. 2015. Edge interpretation of potential field data with the normalized enhanced analytic signal. Acta Geodaetica et Geophysica 51(1), 125-136.
  • Yuan, Y., Yu, Q. 2014. Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods. Pure and Applied Geophysics 172(2), 461-472.
  • Zhou, S., Huang, D., Jiao, J. 2017. Total horizontal derivatives of potential field three - dimensional structure tensor and their application to detect source edges. Acta Geodaetica et Geophysica 52(3), 317-329.
Yıl 2021, Cilt: 165 Sayı: 165, 53 - 62, 19.08.2021
https://doi.org/10.19111/bulletinofmre.746858

Öz

Kaynakça

  • Beiki, M. 2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75 (6), 159-174.
  • Blakely, R. J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge. Cambridge University Press, Cambridge, 326.
  • Cella, F., Fedi, M., Florio, G. 2009. Toward a full multiscale approach to interpret potential fields. Geophysical Prospecting 57, 543-557.
  • Cooper, G. R. J. 2014a. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics 79, J55-J60.
  • Cooper, G. R. J. 2014b. The automatic determination of the location and depth of contacts and dykes from aeromagnetic data. Pure and Applied Geophysics 171(9), 2417-2423.
  • Cooper, G. R. J., Cowan, D. R. 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences 32, 1585-1591.
  • Cooper, G. R. J., Cowan, D. R. 2008. Edge enhancement of potential - field data using normalized statistics. Geophysics 73(3), H1-H4.
  • Cordell, L., Grauch, V. J. S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, in Hinze, William J. (Ed.), The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, Tulsa, Oklahoma, 1985, 181-197.
  • Duan, B. V., Duong, N. A. 2017. The relation between fault movement potential and seismic activity of major faults in Northwestern Vietnam. Vietnam Journal of Earth Sciences 39(3), 240-255.
  • Eldosouky, A. M. 2019. Aeromagnetic data for mapping geologic contacts at Samr El-Qaa area, North Eastern Desert, Egypt. Arabian Journal of Geosciences 12, 2.
  • Evjen, H. M. 1936. The place of the vertical gradient in gravitational interpretations. Geophysics 1(1), 127-136. Fedi, M. 2002. Multiscale derivative analysis: A new tool to enhance detection of gravity source boundaries at various scales. Geophysical Research Letters 29(2), 1029.
  • Fedi, M., Florio, G. 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting 49(1), 40-58.
  • Ferreira, F. J. F., de Souza, J., de Bongiolo, A. B. E. S., de Castro, L. G. 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78(3), J33-J41.
  • Florio, G., Fedi, M., Pastek, R. 2006. On the application of Euler deconvolution to the analytic signal. Geophysics 71(6), L87-L93.
  • Hsu, S. K., Coppense, D., Shyu, C. T. 1996. High - resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique. Geophysics 61, 1947-1957.
  • Li, L., Ma, G., Du, X. 2012. Edge Detection in Potential-Field Data by Enhanced Mathematical Morphology Filter. Pure and Applied Geophysics 170(4), 645-653
  • Ma, G., Li, L. 2012. Edge detection in potential fields with the normalized total horizontal derivative. Computers and Geosciences 41, 83-87.
  • Ma. G., Liu, C., Li, L. 2014. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. Journal of Applied Geophysics 108, 12-18.
  • Miller, H. G., Singh, V. 1994. Potential field tilt a new concept for location of potential field sources. Journal of Applied Geophysics 32, 213-217.
  • Oruç, B. 2011. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı - Central Anatolian Region, Turkey. Pure and Applied Geophysics 168, 1769-1780.
  • Pham, L.T., Oksum, E., Do, T. D., Le - Huy, M. 2018a. New method for edges detection of magnetic sources using logistic function. Geofizichesky Zhurnal 40(6), 127-135.
  • Pham L. T., Le-Huy M., Oksum, E., Do T. D. 2018b. Determination of maximum tilt angle from analytic signal amplitude of magnetic data by the curvature - based method. Vietnam Journal of Earth Sciences 40(4), 354-366.
  • Pham, L. T., Oksum, E., Do, T. D. 2019a. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica 54, 143-155.
  • Pham, L. T., Oksum, E., Do, T. D., Le - Huy, M., Vu, M.D., Nguyen, V.D. 2019b. LAS: a combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data. Contributions to Geophysics and Geodesy 49(4), 425-440.
  • Rajagopalan, S., Milligan, P. 1995. Image enhancement of aeromagnetic data using automatic gain control. Exploration Geophysics 25, 173-178.
  • Roest, W. R. J., Verhoef, J, Pilkington, M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1), 116-125.
  • Roger, F., Maluski, H., Lepvrier, C., Tich, V. V., Paquette, J. L. 2012. LA - ICPMS zircons U / Pb dating of Permo - Triassic and Cretaceous magmatisms in Northern Vietnam - geodynamical implications. Journal of Asian Earth Sciences 48, 72-82. Roger, F., Jolivet, M., Maluski, H., Respaut, J. P., Münch, P., Paquette, J. L., Vu - Van, T., Vu - Van, V. 2014. Emplacement and cooling of the Dien Bien Phu granitic complex: implications for the tectonic evolution of the Dien Bien Phu fault (Truong Son Belt, NW Vietnam). Gondwana Research 26(2), 785-801.
  • Wijns, C., Perez, C., Kowalczyk, P. 2005. Theta map: edge detection in magnetic data. Geophysics 70, 39-43. Yan, T. J., Wu, Y. G., Yuan, Y., Chen, L. N. 2016. Edge detection of potential field data using an enhanced analytic signal tilt angle. Chinese Journal of Geophysics 59(4), 341-349.
  • Yao, Y., Huang, D., Yu, X., Chai, B. 2015. Edge interpretation of potential field data with the normalized enhanced analytic signal. Acta Geodaetica et Geophysica 51(1), 125-136.
  • Yuan, Y., Yu, Q. 2014. Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods. Pure and Applied Geophysics 172(2), 461-472.
  • Zhou, S., Huang, D., Jiao, J. 2017. Total horizontal derivatives of potential field three - dimensional structure tensor and their application to detect source edges. Acta Geodaetica et Geophysica 52(3), 317-329.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Luan Pham 0000-0002-5415-8001

Erdinc Oksum Bu kişi benim 0000-0001-8386-9411

Thanh Duc Do Bu kişi benim 0000-0002-7815-9869

Minh Duc Vu Bu kişi benim 0000-0002-0051-3266

Yayımlanma Tarihi 19 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 165 Sayı: 165

Kaynak Göster

APA Pham, L., Oksum, E., Do, T. D., Vu, M. D. (2021). Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bulletin of the Mineral Research and Exploration, 165(165), 53-62. https://doi.org/10.19111/bulletinofmre.746858
AMA Pham L, Oksum E, Do TD, Vu MD. Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bull.Min.Res.Exp. Ağustos 2021;165(165):53-62. doi:10.19111/bulletinofmre.746858
Chicago Pham, Luan, Erdinc Oksum, Thanh Duc Do, ve Minh Duc Vu. “Comparison of Different Approaches of Computing the Tilt Angle of the Total Horizontal Gradient and Tilt Angle of the Analytic Signal Amplitude for Detecting Source Edges”. Bulletin of the Mineral Research and Exploration 165, sy. 165 (Ağustos 2021): 53-62. https://doi.org/10.19111/bulletinofmre.746858.
EndNote Pham L, Oksum E, Do TD, Vu MD (01 Ağustos 2021) Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bulletin of the Mineral Research and Exploration 165 165 53–62.
IEEE L. Pham, E. Oksum, T. D. Do, ve M. D. Vu, “Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges”, Bull.Min.Res.Exp., c. 165, sy. 165, ss. 53–62, 2021, doi: 10.19111/bulletinofmre.746858.
ISNAD Pham, Luan vd. “Comparison of Different Approaches of Computing the Tilt Angle of the Total Horizontal Gradient and Tilt Angle of the Analytic Signal Amplitude for Detecting Source Edges”. Bulletin of the Mineral Research and Exploration 165/165 (Ağustos 2021), 53-62. https://doi.org/10.19111/bulletinofmre.746858.
JAMA Pham L, Oksum E, Do TD, Vu MD. Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bull.Min.Res.Exp. 2021;165:53–62.
MLA Pham, Luan vd. “Comparison of Different Approaches of Computing the Tilt Angle of the Total Horizontal Gradient and Tilt Angle of the Analytic Signal Amplitude for Detecting Source Edges”. Bulletin of the Mineral Research and Exploration, c. 165, sy. 165, 2021, ss. 53-62, doi:10.19111/bulletinofmre.746858.
Vancouver Pham L, Oksum E, Do TD, Vu MD. Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bull.Min.Res.Exp. 2021;165(165):53-62.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en