Derleme
BibTex RIS Kaynak Göster

Review of Stepped Spillway Designs in the Literature

Yıl 2021, Cilt: 2 Sayı: 1, 25 - 35, 09.07.2021

Öz

Water is an excellent source of energy that we can use over again, thanks to dams. Excess water accumulated in the dam reservoir is transferred from upstream to downstream via spillways. The potential energy of flow at the upstream of the dam transforms into kinetic energy on the chute channel, causing cavitation and destruction. For this reason, stepped spillways are structural elements used to prevent damage and reduce the size of the downstream pool. For this reason, researchers have created different designs for the development of stepped spillways. In this study, it is aimed to review some studies about stepped spillways for the researchers who will work on this subject.

Kaynakça

  • Chanson, Forum article. Hydraulics of Stepped Spillways: Current Status, Jl Hyd. Engrg., ASCE. 126 (2000).
  • K.H. Frizell, B.W. Mefford, Designing Spillways to Prevent Cavitation Damage, Concr. Int. 13 (1991) 58–64.
  • Chanson, Review of studies on stepped channel flows, Work. Flow Charact. around Hydraul. Struct. River Environ. (1998) 25.
  • R.M. Boes, H. Chanson, J. Matos, I. Ohtsu, Y. Yasuda, M. Takahasi, S.P. Tatewar, R.N. Ingle, P.D. Porey, M.R. Chamani, N. Rajaratnam, Characteristics of Skimming Flow over Stepped Spillways, J. Hydraul. Eng. 126 (2000) 860–873. https://doi.org/10.1061/(asce)0733-9429(2000)126:11(860).
  • C.E. Rice, K.C. Kadavy, Model Study of a Roller Compacted Concrete Stepped Spillway, J. Hydraul. Eng. 122 (1996) 292–297. https://doi.org/10.1061/(asce)0733-9429(1996)122:6(292).
  • H. Chanson, L. Toombes, Experimental investigations of air entrainment in transition and skimming flows down a stepped chute, Can. J. Civ. Eng. 29 (2002) 145–156. https://doi.org/10.1139/l01-084.
  • R.M. Boes, W.H. Hager, Hydraulic Design of Stepped Spillways, J. Hydraul. Eng. 129 (2003) 671–679. https://doi.org/10.1061/(asce)0733-9429(2003)129:9(671).
  • M. Berkün, Su Yapıları, Birsen Yayınevi. (2007).
  • Chanson, Stepped spillway flows and air entrainment, Can. J. Civ. Eng. 20 (1993) 422–435. https://doi.org/10.1139/l93-057.
  • I. Ohtsu, Y. Yasuda, Transition from supercritical to subcritical flow at an abrupt drop, J. Hydraul. Res. 29 (1991) 309–328. https://doi.org/10.1080/00221689109498436.
  • Chanson, Prediction of the transition nappe/skimming flow on a stepped channel, J. Hydraul. Res. 34 (1996) 421–429. https://doi.org/10.1080/00221689609498490.
  • H. Chanson, State of the art of the hydraulic design of stepped chute spillways, Hydropower Dams J. (1994) 33–42.
  • Chanson, Hydraulic Design of Stepped Spillways and Downstream Energy Dissipators, Dam Eng. (2001) 205–242.
  • M.W. Essery, I. T. S., & Horner, The Hydraulic Design of Stepped Spillways, Constr. Ind. Res. Inf. Assoc. (1971).
  • R.M. Sorensen, Stepped Spillway Hydraulic Model Investigation, J. Hydraul. Eng. 111 (1985) 1461–1472. https://doi.org/10.1061/(asce)0733-9429(1985)111:12(1461).
  • L. Peyras, P. Royet, G. Degoutte, Flow and Energy Dissipation over Stepped Gabion Weirs, J. Hydraul. Eng. 118 (1992) 707–717. https://doi.org/10.1061/(asce)0733-9429(1992)118:5(707).
  • D. Wuthrich, H. Chanson, Aeration performances of a gabion stepped weir with and without capping, Environ. Fluid Mech. 15 (2015) 711–730. https://doi.org/10.1007/s10652-014-9377-9.
  • A.A. Zuhaira, J.M. Horrillo-Caraballo, H. Karunarathna, D.E. Reeve, Investigating skimming flow conditions over stepped spillways using particle image velocimetry, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2020: p. 012023. https://doi.org/10.1088/1757-899X/888/1/012023.
  • M. Tabbara, J. Chatila, R. Awwad, Computational simulation of flow over stepped spillways, Comput. Struct. 83 (2005) 2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005.
  • H. Shahheydari, J. Nodoshan, R. Barati, M.A. Moghadam, Discharge Coefficient and Energy Dissipation over Stepped Spillway under Skimming Flow Regime, KSCE J. Civ. Eng. 19 (2015) 1174–1182. https://doi.org/10.1007/s12205-013-0749-3.
  • M. Mohammad, R. Tabari, S. Tavakoli, Effects of Stepped Spillway Geometry on Flow Pattern and Energy Dissipation, Arab J Sci Eng. 41 (2016) 1215–1224. https://doi.org/10.1007/s13369-015-1874-8.
  • S. Li, J. Zhang, W. Xu, Numerical investigation of air–water flow properties over steep flat and pooled stepped spillways, J. Hydraul. Res. 56 (2018) 1–14. https://doi.org/10.1080/00221686.2017.1286393.
  • A.A. Hekmatzadeh, S. Papari, S.M. Amiri, Investigation of Energy Dissipation on Various Configurations of Stepped Spillways Considering Several RANS Turbulence Models, Iran. J. Sci. Technol. - Trans. Civ. Eng. 42 (2018) 97–109. https://doi.org/10.1007/s40996-017-0085-9.
  • D.E. Reeve, A.A. Zuhaira, H. Karunarathna, Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways, Water Sci. Eng. 12 (2019) 62–72. https://doi.org/10.1016/j.wse.2019.04.002.
  • M.O. Arjenaki, · Hamed, R.Z. Sanayei, Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach, Model. Earth Syst. Environ. 6 (2020) 605–616. https://doi.org/10.1007/s40808-020-00714-z.
  • A. Ghaderi, S. Abbasi, J. Abraham, H.M. Azamathulla, Efficiency of Trapezoidal Labyrinth Shaped stepped spillways, Flow Meas. Instrum. 72 (2020) 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711. [27] S. Li, J. Yang, Q. Li, Numerical Modelling of Air-Water Flows over a Stepped Spillway with Chamfers and Cavity Blockages, KSCE J. Civ. Eng. 24 (2020) 99–109. https://doi.org/10.1007/s12205-020-1115-x.
  • S. Felder, C. Fromm, H. Chanson, The Unıversıty Of Queensland Report Ch86/12 Aır Entraınment And Energy Dıssıpatıon On A 8.9° Slope Stepped Spıllway Wıth Flat And Pooled Steps School Of Cıvıl Engıneerıng, 2012.
  • S. Felder, P. Guenther, H. Chanson, Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations. 2012.
  • H.K. Zare, J.C. Doering, Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways, J. Hydraul. Eng. 138 (2012) 1119–1124. https://doi.org/10.1061/(asce)hy.1943-7900.0000630.
  • H.K. Zare, J.C. Doering, Effect of rounding edges of stepped spillways on the flow characteristics, Can. J. Civ. Eng. 39 (2012) 140–153. https://doi.org/10.1139/L11-121.
  • S. Felder, H. Chanson, Effects of Step Pool Porosity upon Flow Aeration and Energy Dissipation on Pooled Stepped Spillways, J. Hydraul. Eng. 140 (2014) 04014002. https://doi.org/10.1061/(asce)hy.1943-7900.0000858.
  • S. Mero, S. Mitchell, Investigation of energy dissipation and flow regime over various forms of stepped spillways, Water Environ. J. 31 (2017) 127–137. https://doi.org/10.1111/wej.12224.
  • Z.L. Bai, Y. Peng, J.M. Zhang, Three-Dimensional Turbulence Simulation of Flow in a V-Shaped Stepped Spillway, J. Hydraul. Eng. 143 (2017) 06017011. https://doi.org/10.1061/(asce)hy.1943-7900.0001328.
  • H. Torabi, A. Parsaie, H. Yonesi, E. Mozafari, Energy Dissipation on Rough Stepped Spillways, Iran. J. Sci. Technol. - Trans. Civ. Eng. 42 (2018) 325–330. https://doi.org/10.1007/s40996-018-0092-5.
  • G. Zhang, H. Chanson, Effects of Step and Cavity Shapes on Aeration and Energy Dissipation Performances of Stepped Chutes, J. Hydraul. Eng. 144 (2018) 04018060. https://doi.org/10.1061/(asce)hy.1943-7900.0001505.
  • A. Ashoor, A. Riazi, Stepped Spillways and Energy Dissipation: A Non-Uniform Step Length Approach, Appl. Sci. 9 (2019) 5071. https://doi.org/10.3390/app9235071.
  • J. Wu, S. Qian, Y. Wang, Y. Zhou, Residual Energy on Ski-Jump-Step and Stepped Spillways with Various Step Configurations, J. Hydraul. Eng. 146 (2020) 06020002. https://doi.org/10.1061/(asce)hy.1943-7900.0001710.
  • Y. Zhou, J. Wu, F. Ma, J. Hu, Uniform flow and energy dissipation of hydraulic-jump-stepped spillways, Water Sci. Technol. Water Supply. 20 (2020) 1546–1553. https://doi.org/10.2166/ws.2020.056.

Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi

Yıl 2021, Cilt: 2 Sayı: 1, 25 - 35, 09.07.2021

Öz

Yüzeysel sular, barajlar sayesinde tekrar tekrar kullanabildiğimiz mükemmel bir enerji kaynağıdır. Baraj rezervuarlarında biriken taşkın suları, savaklar yardımıyla membadan mansaba aktarılmaktadır. Baraj gövdesinin membasındaki akımın potansiyel enerjisi boşaltım kanalı üzerinde kinetik enerjiye dönüşerek kavitasyona (oyulmaya) ve dolusavak mansabında tahribata neden olabilmektedir. Bu sebeple basamaklı dolusavaklar, olası muhtemel tahribatların önüne geçmek ve düşüm havuzunun boyutlarını küçültmek amacıyla kullanılan yapı elemanlarıdır. Bu tip savaklardaki basamaklara çarpan akımın enerjisi büyük oranda sönümlendiğinden düşüm havuzu için gerekli olan boyutlar da küçülmektedir. Bu sebepten ötürü, araştırmacılar, basamaklı dolusavakların geliştirilmesi amacıyla farklı tasarımlar oluşturmuştur. Bu çalışmada, basamaklı dolusavakların basamak geometrileri üzerine yapılmış bir kısım çalışmalar derlenerek bu konuda çalışmayı planlayan araştırmacılara küçük bir katkı sunulması amaçlanmıştır.

Kaynakça

  • Chanson, Forum article. Hydraulics of Stepped Spillways: Current Status, Jl Hyd. Engrg., ASCE. 126 (2000).
  • K.H. Frizell, B.W. Mefford, Designing Spillways to Prevent Cavitation Damage, Concr. Int. 13 (1991) 58–64.
  • Chanson, Review of studies on stepped channel flows, Work. Flow Charact. around Hydraul. Struct. River Environ. (1998) 25.
  • R.M. Boes, H. Chanson, J. Matos, I. Ohtsu, Y. Yasuda, M. Takahasi, S.P. Tatewar, R.N. Ingle, P.D. Porey, M.R. Chamani, N. Rajaratnam, Characteristics of Skimming Flow over Stepped Spillways, J. Hydraul. Eng. 126 (2000) 860–873. https://doi.org/10.1061/(asce)0733-9429(2000)126:11(860).
  • C.E. Rice, K.C. Kadavy, Model Study of a Roller Compacted Concrete Stepped Spillway, J. Hydraul. Eng. 122 (1996) 292–297. https://doi.org/10.1061/(asce)0733-9429(1996)122:6(292).
  • H. Chanson, L. Toombes, Experimental investigations of air entrainment in transition and skimming flows down a stepped chute, Can. J. Civ. Eng. 29 (2002) 145–156. https://doi.org/10.1139/l01-084.
  • R.M. Boes, W.H. Hager, Hydraulic Design of Stepped Spillways, J. Hydraul. Eng. 129 (2003) 671–679. https://doi.org/10.1061/(asce)0733-9429(2003)129:9(671).
  • M. Berkün, Su Yapıları, Birsen Yayınevi. (2007).
  • Chanson, Stepped spillway flows and air entrainment, Can. J. Civ. Eng. 20 (1993) 422–435. https://doi.org/10.1139/l93-057.
  • I. Ohtsu, Y. Yasuda, Transition from supercritical to subcritical flow at an abrupt drop, J. Hydraul. Res. 29 (1991) 309–328. https://doi.org/10.1080/00221689109498436.
  • Chanson, Prediction of the transition nappe/skimming flow on a stepped channel, J. Hydraul. Res. 34 (1996) 421–429. https://doi.org/10.1080/00221689609498490.
  • H. Chanson, State of the art of the hydraulic design of stepped chute spillways, Hydropower Dams J. (1994) 33–42.
  • Chanson, Hydraulic Design of Stepped Spillways and Downstream Energy Dissipators, Dam Eng. (2001) 205–242.
  • M.W. Essery, I. T. S., & Horner, The Hydraulic Design of Stepped Spillways, Constr. Ind. Res. Inf. Assoc. (1971).
  • R.M. Sorensen, Stepped Spillway Hydraulic Model Investigation, J. Hydraul. Eng. 111 (1985) 1461–1472. https://doi.org/10.1061/(asce)0733-9429(1985)111:12(1461).
  • L. Peyras, P. Royet, G. Degoutte, Flow and Energy Dissipation over Stepped Gabion Weirs, J. Hydraul. Eng. 118 (1992) 707–717. https://doi.org/10.1061/(asce)0733-9429(1992)118:5(707).
  • D. Wuthrich, H. Chanson, Aeration performances of a gabion stepped weir with and without capping, Environ. Fluid Mech. 15 (2015) 711–730. https://doi.org/10.1007/s10652-014-9377-9.
  • A.A. Zuhaira, J.M. Horrillo-Caraballo, H. Karunarathna, D.E. Reeve, Investigating skimming flow conditions over stepped spillways using particle image velocimetry, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2020: p. 012023. https://doi.org/10.1088/1757-899X/888/1/012023.
  • M. Tabbara, J. Chatila, R. Awwad, Computational simulation of flow over stepped spillways, Comput. Struct. 83 (2005) 2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005.
  • H. Shahheydari, J. Nodoshan, R. Barati, M.A. Moghadam, Discharge Coefficient and Energy Dissipation over Stepped Spillway under Skimming Flow Regime, KSCE J. Civ. Eng. 19 (2015) 1174–1182. https://doi.org/10.1007/s12205-013-0749-3.
  • M. Mohammad, R. Tabari, S. Tavakoli, Effects of Stepped Spillway Geometry on Flow Pattern and Energy Dissipation, Arab J Sci Eng. 41 (2016) 1215–1224. https://doi.org/10.1007/s13369-015-1874-8.
  • S. Li, J. Zhang, W. Xu, Numerical investigation of air–water flow properties over steep flat and pooled stepped spillways, J. Hydraul. Res. 56 (2018) 1–14. https://doi.org/10.1080/00221686.2017.1286393.
  • A.A. Hekmatzadeh, S. Papari, S.M. Amiri, Investigation of Energy Dissipation on Various Configurations of Stepped Spillways Considering Several RANS Turbulence Models, Iran. J. Sci. Technol. - Trans. Civ. Eng. 42 (2018) 97–109. https://doi.org/10.1007/s40996-017-0085-9.
  • D.E. Reeve, A.A. Zuhaira, H. Karunarathna, Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways, Water Sci. Eng. 12 (2019) 62–72. https://doi.org/10.1016/j.wse.2019.04.002.
  • M.O. Arjenaki, · Hamed, R.Z. Sanayei, Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach, Model. Earth Syst. Environ. 6 (2020) 605–616. https://doi.org/10.1007/s40808-020-00714-z.
  • A. Ghaderi, S. Abbasi, J. Abraham, H.M. Azamathulla, Efficiency of Trapezoidal Labyrinth Shaped stepped spillways, Flow Meas. Instrum. 72 (2020) 101711. https://doi.org/10.1016/j.flowmeasinst.2020.101711. [27] S. Li, J. Yang, Q. Li, Numerical Modelling of Air-Water Flows over a Stepped Spillway with Chamfers and Cavity Blockages, KSCE J. Civ. Eng. 24 (2020) 99–109. https://doi.org/10.1007/s12205-020-1115-x.
  • S. Felder, C. Fromm, H. Chanson, The Unıversıty Of Queensland Report Ch86/12 Aır Entraınment And Energy Dıssıpatıon On A 8.9° Slope Stepped Spıllway Wıth Flat And Pooled Steps School Of Cıvıl Engıneerıng, 2012.
  • S. Felder, P. Guenther, H. Chanson, Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations. 2012.
  • H.K. Zare, J.C. Doering, Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways, J. Hydraul. Eng. 138 (2012) 1119–1124. https://doi.org/10.1061/(asce)hy.1943-7900.0000630.
  • H.K. Zare, J.C. Doering, Effect of rounding edges of stepped spillways on the flow characteristics, Can. J. Civ. Eng. 39 (2012) 140–153. https://doi.org/10.1139/L11-121.
  • S. Felder, H. Chanson, Effects of Step Pool Porosity upon Flow Aeration and Energy Dissipation on Pooled Stepped Spillways, J. Hydraul. Eng. 140 (2014) 04014002. https://doi.org/10.1061/(asce)hy.1943-7900.0000858.
  • S. Mero, S. Mitchell, Investigation of energy dissipation and flow regime over various forms of stepped spillways, Water Environ. J. 31 (2017) 127–137. https://doi.org/10.1111/wej.12224.
  • Z.L. Bai, Y. Peng, J.M. Zhang, Three-Dimensional Turbulence Simulation of Flow in a V-Shaped Stepped Spillway, J. Hydraul. Eng. 143 (2017) 06017011. https://doi.org/10.1061/(asce)hy.1943-7900.0001328.
  • H. Torabi, A. Parsaie, H. Yonesi, E. Mozafari, Energy Dissipation on Rough Stepped Spillways, Iran. J. Sci. Technol. - Trans. Civ. Eng. 42 (2018) 325–330. https://doi.org/10.1007/s40996-018-0092-5.
  • G. Zhang, H. Chanson, Effects of Step and Cavity Shapes on Aeration and Energy Dissipation Performances of Stepped Chutes, J. Hydraul. Eng. 144 (2018) 04018060. https://doi.org/10.1061/(asce)hy.1943-7900.0001505.
  • A. Ashoor, A. Riazi, Stepped Spillways and Energy Dissipation: A Non-Uniform Step Length Approach, Appl. Sci. 9 (2019) 5071. https://doi.org/10.3390/app9235071.
  • J. Wu, S. Qian, Y. Wang, Y. Zhou, Residual Energy on Ski-Jump-Step and Stepped Spillways with Various Step Configurations, J. Hydraul. Eng. 146 (2020) 06020002. https://doi.org/10.1061/(asce)hy.1943-7900.0001710.
  • Y. Zhou, J. Wu, F. Ma, J. Hu, Uniform flow and energy dissipation of hydraulic-jump-stepped spillways, Water Sci. Technol. Water Supply. 20 (2020) 1546–1553. https://doi.org/10.2166/ws.2020.056.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Erdinç İkincioğulları Bu kişi benim

Yayımlanma Tarihi 9 Temmuz 2021
Gönderilme Tarihi 13 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

APA İkincioğulları, E. (2021). Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi. Bingöl Üniversitesi Teknik Bilimler Dergisi, 2(1), 25-35.
AMA İkincioğulları E. Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi. BUTS. Temmuz 2021;2(1):25-35.
Chicago İkincioğulları, Erdinç. “Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi”. Bingöl Üniversitesi Teknik Bilimler Dergisi 2, sy. 1 (Temmuz 2021): 25-35.
EndNote İkincioğulları E (01 Temmuz 2021) Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi. Bingöl Üniversitesi Teknik Bilimler Dergisi 2 1 25–35.
IEEE E. İkincioğulları, “Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi”, BUTS, c. 2, sy. 1, ss. 25–35, 2021.
ISNAD İkincioğulları, Erdinç. “Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi”. Bingöl Üniversitesi Teknik Bilimler Dergisi 2/1 (Temmuz 2021), 25-35.
JAMA İkincioğulları E. Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi. BUTS. 2021;2:25–35.
MLA İkincioğulları, Erdinç. “Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi”. Bingöl Üniversitesi Teknik Bilimler Dergisi, c. 2, sy. 1, 2021, ss. 25-35.
Vancouver İkincioğulları E. Literatürdeki Basamaklı Dolusavak Tasarımlarının Derlenmesi. BUTS. 2021;2(1):25-3.
Bu dergi; Bingöl Üniversitesi Teknik Bilimler dergi ekibi tarafından hazırlanmakta ve yayınlanmaktadır.