Yıl 2024,
, 61 - 68, 27.03.2024
Afranur Pendar
Derya Davarcı
Kaynakça
- [1]. Bureekaew S, Shimomura S, Kitagawa S. 2008. Chemistry and application of flexible porous coordination polymers. Science and Technology of Advanced Materials.
- [2]. Kurmoo M. 2009. Magnetic metal–organic frameworks. Chemical Society Reviews, 38:5: 1353-1379.
- [3]. Zhang X, Wang W, Hu Z, Wang G, Uvdal K. 2015. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coordination Chemistry Reviews, 284: 206-235.
- [4]. Liu JQ, Luo ZD, Pan Y, Singh AK, Trivedi M, Kumar A. 2020. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidence. Coordination chemistry reviews, 406: 213145.
- [5]. Janiak, C. 2003. Engineering coordination polymers towards applications. Dalton Transactions, 14: 2781-2804.
- [6]. Davarcı D, Duyar C, Zorlu Y. 2023. 3D Ag (I) coordination polymer constructed from a flexible pyridyloxycyclotetraphoshazene linker: Synthesis, crystal structure and dye adsorption properties. Polyhedron, 231: 116250.
- [7]. Karmakar A, Paul A, Santos IRM, Santos PMR, Sabatini EP, Gurbanov AV, Guedes da Silva MFC, Pombeiro AJL, 2022. Highly efficient adsorptive removal of organic dyes from aqueous solutions using polyaromatic group-containing Zn(II)-based coordination polymers. Cryst. Growth Des. 22: 2248–2265.
- [8]. Zhuang Y, Zhua Q, Lia G, Wanga Z, Zhana P, Renb C, Sia Z, Li S, Caia D, Qinb P. 2022. Photocatalytic degradation of organic dyes using covalent triazine-based framework. Mater. Res. Bull. 146: 111619.
- [9]. Jain R, Mathur M, Sikarwar S, Mittal A. 2007. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments, J. Environ. Manage., 85: 956-964.
- [10]. Jeevananthan V, Thangavelu SAG, Loganathan P, Shanmugan S. 2021. Multisite coordination ligands on cyclotriphosphazene core for the assembly of metal clusters and porous coordination polymers. ChemistrySelect 6(7): 1478-1507.
- [11]. Narayanan, RS, and Chandrasekhar V. 2016. Molecular, 1D and 2D assemblies from hexakis (3-pyridyloxy) cyclophosphazene containing 20-membered metallamacrocyclic motifs." Dalton Transactions 45(5):2273-2283.
- [12]. Davarcı D, Gür R, Beşli S, Şenkuytu E, Zorlu Y. 2016. Silver (I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies, and investigation of the counteranion effects. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 72(3): 344-356.
- [13]. Davarcı D, Zorlu Y. 2017. Group 12 metal coordination polymers built on a flexible hexakis (3-pyridyloxy) cyclotriphosphazene ligand: Effect of the central metal ions on the construction of coordination polymers. Polyhedron, 127: 1-8.
- [14]. Duyar C, Pendar A, Bektaş N, Zorlu Y, Davarcı D. 2023. 2D and 3D Ag (I) coordination polymers with a 2-methylimidazole substituted cyclotriphosphazene ligand: Structures and dye adsorption properties. Polyhedron, 244: 116589.
- [15]. Pendar A, Duyar C, Zorlu Y, Davarcı D., 2023. Ag(I) and Hg(II) Coordination Polymers Decorated from Fully Benzimidazole Substituted Cyclotriphosphazene Ligand and Adsorption Behaviour Against Methylene Blue, Journal of Inorganic and Organometallic Polymers and Materials, (doi: 10.1007/s10904-023-02949-6)
- [16]. Erkovan AO, Seifi A, Aksoy BT, Zorlu Y, Khataee A, Çoşut B. 2023. Catalytic Activity of Zn (II) Coordination Polymer Based on a Cyclotriphosphazene-Functionalized Ligand for Removal of Organic Dyes. Catalysts, 13(4): 756.
- [17]. Morsali A, Masoomi MY. 2009. Structures and properties of mercury (II) coordination polymers. Coordination Chemistry Reviews, 253(13-14):1882-1905.
- [18]. Xiong, G., Gao, S., Zhang, Q., Ren, B., You, L., Ding, F., Sun, Y. 2022. High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents. Polymer, 247, 124787.
- [19]. Wang, Y., Soldatov, M., Wang, Q., & Liu, H. 2021. Phosphazene functionalized silsesquioxane-based porous polymers for absorbing I2, CO2 and dyes. Polymer, 218, 123491.
- [20]. Zou, J., Liao, K., Xiang, L., Liu, M., Xie, F., Liu, X., Wang, Y. 2020. Synthesis of poly (cyclotriphosphazene-co-4, 4′-diaminodiphenysulfone) microspheres and their adsorption properties for cationic dyes (methylene blue). Journal of Inorganic and Organometallic Polymers and Materials, 30, 976-985.
- [21]. Chen, Z., Fu, J., Wang, M., Wang, X., Zhang, J., & Xu, Q. 2014. Adsorption of cationic dye (methylene blue) from aqueous solution using poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanospheres. Applied Surface Science, 289, 495-501.
- [22]. Wang, Y., Yang, N., Soldatov, M., & Liu, H. 2022. A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. Reactive and Functional Polymers, 173, 105235.
- [23]. Huang J-H, Huang K-L, Liu S-Q, Wang A-T, Yan C. 2008. Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330 (1): 55-61.
Rhodamine B Hazardous Dye Removal via Adsorption Using Hg(II) Coordination Polymer
Yıl 2024,
, 61 - 68, 27.03.2024
Afranur Pendar
Derya Davarcı
Öz
Herein, we have reported the Hg(II) coordination polymer ,(Hg-CP), formulated {[Hg(L)](Cl2)](CH3CN)2}n, behaved as adsorbent against Rhodamine B dye stuff. UV-Vis absorption spectroscopy was used to conduct dye adsorption investigations on coordination polymers. Adsorption experiments were carried out in acidic (pH=3) and neutral (pH=6) media and the results showed that the compound removed the cationic Rhodamine B from water. In acidic media, the adsorption capacity of the Hg-CP was more than neutral media. Also, Hg-CP could selectively adsorb Rhodamine B dye from the Rhodamine B/Methyl orange dye mixture. The colour of the Hg-CP was white before adsorption, whereas it changed after adsorption as Rhodamine B adhered to the surface of Hg-CP.
Etik Beyan
Etik kurallara aykırı bir durum söz konusu değildir.
Destekleyen Kurum
TUBİTAK
Teşekkür
Makale içinde TUBİTAK 121Z236 no' lu projeye teşekkür edilmiştir.
Kaynakça
- [1]. Bureekaew S, Shimomura S, Kitagawa S. 2008. Chemistry and application of flexible porous coordination polymers. Science and Technology of Advanced Materials.
- [2]. Kurmoo M. 2009. Magnetic metal–organic frameworks. Chemical Society Reviews, 38:5: 1353-1379.
- [3]. Zhang X, Wang W, Hu Z, Wang G, Uvdal K. 2015. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coordination Chemistry Reviews, 284: 206-235.
- [4]. Liu JQ, Luo ZD, Pan Y, Singh AK, Trivedi M, Kumar A. 2020. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidence. Coordination chemistry reviews, 406: 213145.
- [5]. Janiak, C. 2003. Engineering coordination polymers towards applications. Dalton Transactions, 14: 2781-2804.
- [6]. Davarcı D, Duyar C, Zorlu Y. 2023. 3D Ag (I) coordination polymer constructed from a flexible pyridyloxycyclotetraphoshazene linker: Synthesis, crystal structure and dye adsorption properties. Polyhedron, 231: 116250.
- [7]. Karmakar A, Paul A, Santos IRM, Santos PMR, Sabatini EP, Gurbanov AV, Guedes da Silva MFC, Pombeiro AJL, 2022. Highly efficient adsorptive removal of organic dyes from aqueous solutions using polyaromatic group-containing Zn(II)-based coordination polymers. Cryst. Growth Des. 22: 2248–2265.
- [8]. Zhuang Y, Zhua Q, Lia G, Wanga Z, Zhana P, Renb C, Sia Z, Li S, Caia D, Qinb P. 2022. Photocatalytic degradation of organic dyes using covalent triazine-based framework. Mater. Res. Bull. 146: 111619.
- [9]. Jain R, Mathur M, Sikarwar S, Mittal A. 2007. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments, J. Environ. Manage., 85: 956-964.
- [10]. Jeevananthan V, Thangavelu SAG, Loganathan P, Shanmugan S. 2021. Multisite coordination ligands on cyclotriphosphazene core for the assembly of metal clusters and porous coordination polymers. ChemistrySelect 6(7): 1478-1507.
- [11]. Narayanan, RS, and Chandrasekhar V. 2016. Molecular, 1D and 2D assemblies from hexakis (3-pyridyloxy) cyclophosphazene containing 20-membered metallamacrocyclic motifs." Dalton Transactions 45(5):2273-2283.
- [12]. Davarcı D, Gür R, Beşli S, Şenkuytu E, Zorlu Y. 2016. Silver (I) coordination polymers assembled from flexible cyclotriphosphazene ligand: structures, topologies, and investigation of the counteranion effects. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 72(3): 344-356.
- [13]. Davarcı D, Zorlu Y. 2017. Group 12 metal coordination polymers built on a flexible hexakis (3-pyridyloxy) cyclotriphosphazene ligand: Effect of the central metal ions on the construction of coordination polymers. Polyhedron, 127: 1-8.
- [14]. Duyar C, Pendar A, Bektaş N, Zorlu Y, Davarcı D. 2023. 2D and 3D Ag (I) coordination polymers with a 2-methylimidazole substituted cyclotriphosphazene ligand: Structures and dye adsorption properties. Polyhedron, 244: 116589.
- [15]. Pendar A, Duyar C, Zorlu Y, Davarcı D., 2023. Ag(I) and Hg(II) Coordination Polymers Decorated from Fully Benzimidazole Substituted Cyclotriphosphazene Ligand and Adsorption Behaviour Against Methylene Blue, Journal of Inorganic and Organometallic Polymers and Materials, (doi: 10.1007/s10904-023-02949-6)
- [16]. Erkovan AO, Seifi A, Aksoy BT, Zorlu Y, Khataee A, Çoşut B. 2023. Catalytic Activity of Zn (II) Coordination Polymer Based on a Cyclotriphosphazene-Functionalized Ligand for Removal of Organic Dyes. Catalysts, 13(4): 756.
- [17]. Morsali A, Masoomi MY. 2009. Structures and properties of mercury (II) coordination polymers. Coordination Chemistry Reviews, 253(13-14):1882-1905.
- [18]. Xiong, G., Gao, S., Zhang, Q., Ren, B., You, L., Ding, F., Sun, Y. 2022. High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents. Polymer, 247, 124787.
- [19]. Wang, Y., Soldatov, M., Wang, Q., & Liu, H. 2021. Phosphazene functionalized silsesquioxane-based porous polymers for absorbing I2, CO2 and dyes. Polymer, 218, 123491.
- [20]. Zou, J., Liao, K., Xiang, L., Liu, M., Xie, F., Liu, X., Wang, Y. 2020. Synthesis of poly (cyclotriphosphazene-co-4, 4′-diaminodiphenysulfone) microspheres and their adsorption properties for cationic dyes (methylene blue). Journal of Inorganic and Organometallic Polymers and Materials, 30, 976-985.
- [21]. Chen, Z., Fu, J., Wang, M., Wang, X., Zhang, J., & Xu, Q. 2014. Adsorption of cationic dye (methylene blue) from aqueous solution using poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanospheres. Applied Surface Science, 289, 495-501.
- [22]. Wang, Y., Yang, N., Soldatov, M., & Liu, H. 2022. A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. Reactive and Functional Polymers, 173, 105235.
- [23]. Huang J-H, Huang K-L, Liu S-Q, Wang A-T, Yan C. 2008. Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330 (1): 55-61.