Araştırma Makalesi
BibTex RIS Kaynak Göster

The Concept of Parafree Zinbiel Algebras

Yıl 2024, , 67 - 71, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1455387

Öz

Pf (parafree) Zinbiel (PfZin) algebras, a generalization of Leibniz algebras, share various traits with free Zinbiel algebras. This article delves into the intricacies of PfZin algebras, presenting their structure and exploring significant findings analogous to those in parafree Leibniz algebras. The focus extends to properties of subalgebras and quotient algebras within the realm of PfZin algebras. Additionally, the direct sum of these algebras is examined, demonstrating that the amalgamation of two PfZin algebras yields a Zinbiel algebra. A new connection between weak Hopf algebras and PfZin algeras constructed. Moreover, from the direct sum of PfZin algebras weak Hopf algebra is handled and construction of weak Hopf algebra usuing PfZin algebra is showed.

Kaynakça

  • [1]. Aissaoui, R., Makhlouf, A., & Silvestrov, S. (2014). Hom-Lie coalgebras, Hom-Zinbiel algebras and Hom-Hopf algebras. Frontiers in Mathematics, 1(1), 89-111.
  • [2]. Bahturin, Y. I . 1987. Density relations in Lie algebras, VNU Science Press, Utrecht.
  • [3]. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • [4]. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • [5]. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • [6]. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • [7]. Böhm, Gabriella; Nill, Florian; Szlachányi, Kornel (1999). "Weak Hopf algebras. I. Integral theory and C-structure". Journal of Algebra. 221 (2): 385–438. doi:10.1006/jabr.1999.7984.
  • [8]. Elduque, A., & Makhlouf, A. 2020. Super Zinbiel algebras. Symmetry, Integrability and Geometry: Methods and Applications, 16, 017.
  • [9]. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • [10]. Ekici N, Velioğlu Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • [11]. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • [12]. Gunzburg, V. & Kapranov, M. 1994. Koszul duality for operads, Duke Math. J. 76, 203-273.
  • [13]. Loday, J. L. 1995. Cup-product for Leibniz cohomology and dual Leibniz algebras, Math Scand. 77 (2), 189-196.
  • [14]. Loday, J. L. 2001. Dialgebras, In J.L. Loday, F. Chapoton, A. Frabetti and F. Goichot: Dialgebras and Related Operads. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg vol 1763.
  • [15]. Loday, J. L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • [16]. Makhlouf, A., & Goze, M. 2010. Zinbiel algebras and the Wajnryb homomorphism. Journal of Algebra, 324(3), 874-890.
  • [17]. Mansuroğlu, N. 2022. On parafree Leibniz algebras. Celal Bayar University of Science, 18,3, 275-278.
  • [18]. Poland, A. 2015. Zinbiel Algebras: From Foundations to Applications. Springer.
  • [19]. Silvestrov, S., & Makhlouf, A. 2014. Deformations of Zinbiel algebras and higher homotopy algebras. Journal of Noncommutative Geometry, 8(2), 421-47.
  • [20]. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
Yıl 2024, , 67 - 71, 29.12.2024
https://doi.org/10.18466/cbayarfbe.1455387

Öz

Kaynakça

  • [1]. Aissaoui, R., Makhlouf, A., & Silvestrov, S. (2014). Hom-Lie coalgebras, Hom-Zinbiel algebras and Hom-Hopf algebras. Frontiers in Mathematics, 1(1), 89-111.
  • [2]. Bahturin, Y. I . 1987. Density relations in Lie algebras, VNU Science Press, Utrecht.
  • [3]. Baur, H. 1980. A note on parafree Lie algebras, Commun. in Alg.; 8(10): 953-960.
  • [4]. Baur, H. 1978. Parafreie Lie algebren and homologie, Diss. Eth Nr.; 6126: 60 pp.
  • [5]. Bloh, A.M. 1965. A generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR; 165: 471-473.
  • [6]. Bloh, A.M. 1971. A certain generalization of the concept of Lie algebra, Algebra and Number Theory, Moskow. Gos. Ped. Inst. U`cen; 375: 9-20.
  • [7]. Böhm, Gabriella; Nill, Florian; Szlachányi, Kornel (1999). "Weak Hopf algebras. I. Integral theory and C-structure". Journal of Algebra. 221 (2): 385–438. doi:10.1006/jabr.1999.7984.
  • [8]. Elduque, A., & Makhlouf, A. 2020. Super Zinbiel algebras. Symmetry, Integrability and Geometry: Methods and Applications, 16, 017.
  • [9]. Ekici, N, Velioğlu, Z. 2014. Unions of Parafree Lie algebras, Algebra; Article ID 385397.
  • [10]. Ekici N, Velioğlu Z. 2015. Direct Limit of Parafree Lie algebras, Journal of Lie Theory; 25(2): 477-484.
  • [11]. Evans, T. 1969. Finitely presented loops, lattices, etc. are Hopfian, J. London Math. Soc.; 44: 551-552.
  • [12]. Gunzburg, V. & Kapranov, M. 1994. Koszul duality for operads, Duke Math. J. 76, 203-273.
  • [13]. Loday, J. L. 1995. Cup-product for Leibniz cohomology and dual Leibniz algebras, Math Scand. 77 (2), 189-196.
  • [14]. Loday, J. L. 2001. Dialgebras, In J.L. Loday, F. Chapoton, A. Frabetti and F. Goichot: Dialgebras and Related Operads. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg vol 1763.
  • [15]. Loday, J. L., Pirashvili, T. 1993. Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.; 269(1): 139-158.
  • [16]. Makhlouf, A., & Goze, M. 2010. Zinbiel algebras and the Wajnryb homomorphism. Journal of Algebra, 324(3), 874-890.
  • [17]. Mansuroğlu, N. 2022. On parafree Leibniz algebras. Celal Bayar University of Science, 18,3, 275-278.
  • [18]. Poland, A. 2015. Zinbiel Algebras: From Foundations to Applications. Springer.
  • [19]. Silvestrov, S., & Makhlouf, A. 2014. Deformations of Zinbiel algebras and higher homotopy algebras. Journal of Noncommutative Geometry, 8(2), 421-47.
  • [20]. Velioğlu, Z. 2013. Subalgebras and Quotient algebras of Parafree Lie algebras, I. Journal Pure and Applied Maths.; 83(3) 507-514.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Makaleler
Yazarlar

Zekiye Çiloğlu Şahin 0000-0002-3711-4621

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 19 Mart 2024
Kabul Tarihi 18 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çiloğlu Şahin, Z. (2024). The Concept of Parafree Zinbiel Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(4), 67-71. https://doi.org/10.18466/cbayarfbe.1455387
AMA Çiloğlu Şahin Z. The Concept of Parafree Zinbiel Algebras. CBUJOS. Aralık 2024;20(4):67-71. doi:10.18466/cbayarfbe.1455387
Chicago Çiloğlu Şahin, Zekiye. “The Concept of Parafree Zinbiel Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, sy. 4 (Aralık 2024): 67-71. https://doi.org/10.18466/cbayarfbe.1455387.
EndNote Çiloğlu Şahin Z (01 Aralık 2024) The Concept of Parafree Zinbiel Algebras. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 4 67–71.
IEEE Z. Çiloğlu Şahin, “The Concept of Parafree Zinbiel Algebras”, CBUJOS, c. 20, sy. 4, ss. 67–71, 2024, doi: 10.18466/cbayarfbe.1455387.
ISNAD Çiloğlu Şahin, Zekiye. “The Concept of Parafree Zinbiel Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/4 (Aralık 2024), 67-71. https://doi.org/10.18466/cbayarfbe.1455387.
JAMA Çiloğlu Şahin Z. The Concept of Parafree Zinbiel Algebras. CBUJOS. 2024;20:67–71.
MLA Çiloğlu Şahin, Zekiye. “The Concept of Parafree Zinbiel Algebras”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 20, sy. 4, 2024, ss. 67-71, doi:10.18466/cbayarfbe.1455387.
Vancouver Çiloğlu Şahin Z. The Concept of Parafree Zinbiel Algebras. CBUJOS. 2024;20(4):67-71.