Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, , 353 - 358, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319873

Öz

Kaynakça

  • [1] Alomari, M; Darus M. On the Hadamard’s inequality for convex functions on the coordinates, Journal of Inequalities and Applications, Volume 2009, Article ID 283147, 13 pages. http://192.43.228.178/journals/HOA/JIA/Volume2009/283147.pdf
  • [2] Dragomir, SS. Some Jensen’s Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces, Bulletin of the Malaysian Mathematical Sciences Society, 2011, 34 /3: 445-454. https://www.emis.de/journals/BMMSS/pdf/v34n3/v34n3p3.pdf
  • [3] Niculescu, CP. The Hermite–Hadamard inequality for convex functions, Nonlinear Analysis, 2012, 75: 662–669.
  • [4] Pachpatte, B. G. A note on integral inequalities involving two log-convex functions, Mathematical Inequalities & Applications, 2004, 7/4: 511–515.
  • [5] Pečarić, J; Rehman, A. U. On logarithmic convexity for power sums and related results, Journal of Inequalities and Applications, vol. 2008, Article ID 389410, 9 pages, 2008. https://www.emis.de/journals/HOA/JIA/Volume2008/305623.pdf
  • [6] Yang, G. S.; Tseng, KL, Wang H. T. A note on integral inequalities of Hadamard type for convex and concave functions, Taiwanese Journal of Mathematics, 2012, 16 /2: 479-496. http://society.math.ntu.edu.tw/~journal/tjm/V16N2/TJM-273.pdf
  • [7] Zhanga, X; Jiang, W. Some properties of convex function and applications for the exponential function, Computers and Mathematics with Applications, 2012, 63: 1111–1116. http://fulltext.study/preview/pdf/471578.pdf
  • [8] Shuang, Y; Wang, Y; Qi, F. Some inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, Journal of Computational Analysis and Applications, 2014, 17/2: 272-279.

Inequalities for log-convex functions via three times differentiability

Yıl 2017, , 353 - 358, 30.06.2017
https://doi.org/10.18466/cbayarfbe.319873

Öz


In
this paper, some new integral inequalities like Hermite-Hadamard type for functions
whose third derivatives absolute value are
convex are established. Some applications to quadrature formula
for midpoint error estimate are given.





Kaynakça

  • [1] Alomari, M; Darus M. On the Hadamard’s inequality for convex functions on the coordinates, Journal of Inequalities and Applications, Volume 2009, Article ID 283147, 13 pages. http://192.43.228.178/journals/HOA/JIA/Volume2009/283147.pdf
  • [2] Dragomir, SS. Some Jensen’s Type Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces, Bulletin of the Malaysian Mathematical Sciences Society, 2011, 34 /3: 445-454. https://www.emis.de/journals/BMMSS/pdf/v34n3/v34n3p3.pdf
  • [3] Niculescu, CP. The Hermite–Hadamard inequality for convex functions, Nonlinear Analysis, 2012, 75: 662–669.
  • [4] Pachpatte, B. G. A note on integral inequalities involving two log-convex functions, Mathematical Inequalities & Applications, 2004, 7/4: 511–515.
  • [5] Pečarić, J; Rehman, A. U. On logarithmic convexity for power sums and related results, Journal of Inequalities and Applications, vol. 2008, Article ID 389410, 9 pages, 2008. https://www.emis.de/journals/HOA/JIA/Volume2008/305623.pdf
  • [6] Yang, G. S.; Tseng, KL, Wang H. T. A note on integral inequalities of Hadamard type for convex and concave functions, Taiwanese Journal of Mathematics, 2012, 16 /2: 479-496. http://society.math.ntu.edu.tw/~journal/tjm/V16N2/TJM-273.pdf
  • [7] Zhanga, X; Jiang, W. Some properties of convex function and applications for the exponential function, Computers and Mathematics with Applications, 2012, 63: 1111–1116. http://fulltext.study/preview/pdf/471578.pdf
  • [8] Shuang, Y; Wang, Y; Qi, F. Some inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, Journal of Computational Analysis and Applications, 2014, 17/2: 272-279.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Merve Avcı Ardıç Bu kişi benim

Emin Özdemir

Yayımlanma Tarihi 30 Haziran 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Avcı Ardıç, M., & Özdemir, E. (2017). Inequalities for log-convex functions via three times differentiability. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(2), 353-358. https://doi.org/10.18466/cbayarfbe.319873
AMA Avcı Ardıç M, Özdemir E. Inequalities for log-convex functions via three times differentiability. CBUJOS. Haziran 2017;13(2):353-358. doi:10.18466/cbayarfbe.319873
Chicago Avcı Ardıç, Merve, ve Emin Özdemir. “Inequalities for Log-Convex Functions via Three Times Differentiability”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, sy. 2 (Haziran 2017): 353-58. https://doi.org/10.18466/cbayarfbe.319873.
EndNote Avcı Ardıç M, Özdemir E (01 Haziran 2017) Inequalities for log-convex functions via three times differentiability. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 2 353–358.
IEEE M. Avcı Ardıç ve E. Özdemir, “Inequalities for log-convex functions via three times differentiability”, CBUJOS, c. 13, sy. 2, ss. 353–358, 2017, doi: 10.18466/cbayarfbe.319873.
ISNAD Avcı Ardıç, Merve - Özdemir, Emin. “Inequalities for Log-Convex Functions via Three Times Differentiability”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/2 (Haziran 2017), 353-358. https://doi.org/10.18466/cbayarfbe.319873.
JAMA Avcı Ardıç M, Özdemir E. Inequalities for log-convex functions via three times differentiability. CBUJOS. 2017;13:353–358.
MLA Avcı Ardıç, Merve ve Emin Özdemir. “Inequalities for Log-Convex Functions via Three Times Differentiability”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 13, sy. 2, 2017, ss. 353-8, doi:10.18466/cbayarfbe.319873.
Vancouver Avcı Ardıç M, Özdemir E. Inequalities for log-convex functions via three times differentiability. CBUJOS. 2017;13(2):353-8.