Araştırma Makalesi
BibTex RIS Kaynak Göster

Morphism Properties of Digital Categories

Yıl 2017, , 619 - 622, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339314

Öz

In this paper we defined the



















 category and researched
the properties of monomorphism, epimorphism and isomorphism for digital
categories which are related with the categorical structure in [1]. Also
initial and terminal objects in digital categories are defined by using


 adjacency relation.
Hence we determined the initial and terminal objects of digital categories
which have digital image with


 adjacency as
objects.
   In addition to this we proved
that the objects of the same type in a digital category are isomorphic.

Kaynakça

  • 1. Öztunç S., Mutlu A., Categories in Digital Images, American Journal of Mathematics and Statistics, January 2013;Vol.3, No.1.
  • 2. Rosenfeld A., ‘Continuous’ functions on digital pic-tures, Pattern Recognition Letters, 1986; Vol. 4, 177–184.
  • 3. Han, S.E. An Extended Digital 01 (k0,k1 )-Continuity. J. Appl. Math. Comput. 2004, 16, 445-452.
  • 4. Kong T.Y., Roscoe A.W., and Rosenfeld A., Concepts of digital topology, Topology and its Applications, 1992, 46, 219–262.
  • 5. Boxer L., Digitally continuous functions, Pattern Recognition Letters, 1994, 15 833–839.
  • 6. Boxer L., Properties of Digital Homotopy, Journal of Mathematical Imaging and Vision, 2005, 22 19–26.
  • 7. Karaca I., Boxer L. and Öztel A., Topological Invari-ants in Digital Images, Jour. of Mathematical Sciences: Advances and Applications, 2011, 2, 109-140.
  • 8. Awoday S., Category Theory, Oxford Science Publica-tion, 2010.
  • 9. Blyth T.S., Categories, Longman 1986.
  • 10. Öztunç S., Some Properties of Soft Categories, Interna-tional Journal of Modeling and Optimization, 2016; 6(2),91-95.
Yıl 2017, , 619 - 622, 30.09.2017
https://doi.org/10.18466/cbayarfbe.339314

Öz

Kaynakça

  • 1. Öztunç S., Mutlu A., Categories in Digital Images, American Journal of Mathematics and Statistics, January 2013;Vol.3, No.1.
  • 2. Rosenfeld A., ‘Continuous’ functions on digital pic-tures, Pattern Recognition Letters, 1986; Vol. 4, 177–184.
  • 3. Han, S.E. An Extended Digital 01 (k0,k1 )-Continuity. J. Appl. Math. Comput. 2004, 16, 445-452.
  • 4. Kong T.Y., Roscoe A.W., and Rosenfeld A., Concepts of digital topology, Topology and its Applications, 1992, 46, 219–262.
  • 5. Boxer L., Digitally continuous functions, Pattern Recognition Letters, 1994, 15 833–839.
  • 6. Boxer L., Properties of Digital Homotopy, Journal of Mathematical Imaging and Vision, 2005, 22 19–26.
  • 7. Karaca I., Boxer L. and Öztel A., Topological Invari-ants in Digital Images, Jour. of Mathematical Sciences: Advances and Applications, 2011, 2, 109-140.
  • 8. Awoday S., Category Theory, Oxford Science Publica-tion, 2010.
  • 9. Blyth T.S., Categories, Longman 1986.
  • 10. Öztunç S., Some Properties of Soft Categories, Interna-tional Journal of Modeling and Optimization, 2016; 6(2),91-95.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Simge Öztunç

Yayımlanma Tarihi 30 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Öztunç, S. (2017). Morphism Properties of Digital Categories. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(3), 619-622. https://doi.org/10.18466/cbayarfbe.339314
AMA Öztunç S. Morphism Properties of Digital Categories. CBUJOS. Eylül 2017;13(3):619-622. doi:10.18466/cbayarfbe.339314
Chicago Öztunç, Simge. “Morphism Properties of Digital Categories”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13, sy. 3 (Eylül 2017): 619-22. https://doi.org/10.18466/cbayarfbe.339314.
EndNote Öztunç S (01 Eylül 2017) Morphism Properties of Digital Categories. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13 3 619–622.
IEEE S. Öztunç, “Morphism Properties of Digital Categories”, CBUJOS, c. 13, sy. 3, ss. 619–622, 2017, doi: 10.18466/cbayarfbe.339314.
ISNAD Öztunç, Simge. “Morphism Properties of Digital Categories”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 13/3 (Eylül 2017), 619-622. https://doi.org/10.18466/cbayarfbe.339314.
JAMA Öztunç S. Morphism Properties of Digital Categories. CBUJOS. 2017;13:619–622.
MLA Öztunç, Simge. “Morphism Properties of Digital Categories”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 13, sy. 3, 2017, ss. 619-22, doi:10.18466/cbayarfbe.339314.
Vancouver Öztunç S. Morphism Properties of Digital Categories. CBUJOS. 2017;13(3):619-22.