Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 57 - 64, 22.03.2019
https://doi.org/10.18466/cbayarfbe.459295

Öz

Kaynakça

  • 1. Neumann, M, Kuepper, K. 2009. X-ray spectroscopic techniques are powerful tools for electronic structure investigations of transition metal oxides. Surface Science; 603: 1613–1621.
  • 2. Haas, T.W, Grant, J.T, Dooley G.J. 1970. Auger electron spectroscopy of transition metals. Physical Review B; 1: 1449–1459.
  • 3. Nemethy, A, Köver, L, Cserny, I, Varga, D, Barna P.B. 1996. The KLL and KLM Auger Spectra of 3d transition metals Z=23–26. Journal of Electron Spectroscopy and Related Phenomena; 82: 31–40.
  • 4. Ursic, M, Kavcic, M, Budnar, M. 2003. Second order radiative contributions in the K1,3 X-ray spectra of 3d transition metals and their dependence on the chemical state of the element. Nuclear Instruments and Methods in Physics Research B; 211: 7–14.
  • 5. Ito, Y, Tochio, T, Ohashi, H, Yamashita, M, Fukushima, S, Polasik, M, Slabkowska, K, Syrocki, L, Szymanska, E, Rzadkiewicz, J, Indelicato, P, Marques, J.P, Martins, M.C, Santos, J.P, Parente, F. 2016. K1,2 X-ray linewidths, asymmetry indices, and [KM] shake probabilities in elements Ca to Ge and comparison with theory for Ca, Ti and Ge. Physical Review A; 94: 042506.
  • 6. Hölzer, G, Fritsch, M, Deutsch, M, Hartwig, J, Förster, E. 1997. K1,2andK1,3 X-ray emission lines of the 3d transition metals. Physical Review A; 56: 4554.
  • 7. Ito, Y, Tochio, T, Oohashi, H, Vlaicu, A.M. 2006. Contribution of the [1s3d] shake process to K1,2 spectra in 3d elements. Radiation Physics and Chemistry; 75: 1534–1537.
  • 8. Deutsch M,Hölzer G, Hartwig J, Wolf J, Fritsch M, Förster E, Kand K X-ray emission spectra of copper, Physical Review A 1995,51, 283.
  • 9. Sorum, H. 1987. The K1,2 X-ray spectra of the 3d transition metals Cr, Fe, Co, Ni and Cu. Journal of Physics F: Metal Physics; 17: 417–425.
  • 10. Chantler, C.T, Kinnane, M.N, Su, C.-H, Kimpton, J.A. 2006. Characterization of K spectral profiles for vanadium, component redetermination for scandium, titanium, chromium, and manganese and development of satellite structure for Z=21 to Z=25. Physical Review A;73: 012508.
  • 11. Chantler, C.T, Lowe, J.A, Grant, I.P. 2013. High accuracy reconstruction of titanium X-ray emission spectra, including relative intensities, asymmetry and satellites, and ab initio determination of shake magnitudes for transition metals. Journal of Physics B: Atomic Molecular and Optical Physics; 46: 015002.
  • 12. Ito, Y, Tochio, T,Yamashita, M, Fukushima, S,Vlaicu, A.M, Syrocki, L, Slabkowska, K, Weder, E, Polasik, M, Sawicka, K, Indelicato, P, Marques, J.P, Sampaio, J.M, Guerra, M, Santos, J.P, Parente, F. 2018. Structure of high resolution K1,3 X-ray emission spectra for the elements from Ca to Ge. Physical Review A; 97: 052505.
  • 13. Limandri, S.P, Carreras, A.C, Bonetto, R.D, Trincavelli, J.C. 2010. Ksatellite and forbidden transitions in elements with 12≤Z≤30 induced by electron impact. Physical Review A; 81: 012504.
  • 14. Weissmann, R, Koschatzky, R, Schnellhammer, W, Müller, K. 1977. Some Aspects of Auger Electron Spectra of 3d transition metal oxides. Applied Physics; 13: 43–46.
  • 15. Aylikci, V, Kahoul, A, Kup Aylikci, N, Tirasoglu, E, Karahan, I.H. 2015. Empirical, semi-empirical and experimental determination of K X-ray fluorescence parameters of some elements in the atomic range 21≤Z≤30. Spectroscopy Letters; 48: 331–342.
  • 16. Akman, F. 2016. Experimental values of K to Li sub-shell, K to L, and K to M shell vacancy transfer probabilities for some rare earth elements. Applied Radiation and Isotopes; 115: 295-303.
  • 17. Scofield, J.H, Lawrence Livermore National Laboratory Report UCRL-51326 (1973).
  • 18. Scofield, J.H. 1974. Relativistic Hartree-Slater Values for K and L X-Ray Emission Rates. Atomic Data and Nuclear Data Tables; 14: 121–137.
  • 19. Krause, M.O., Oliver, J.H. 1979. Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data; 8: 329–338.
  • 20. Perkins, S. T, Cullen, D. E, Chen, M. H, Hubbell, J.H, Rathkopf, J, Scofield, J.H. 1991. Tables and Graphs of Atomic Subshell Relaxation Data Derived from the LLNL Evaluated Atomic Data Library Z=1-100. Lawrence Livermore National Laboratory Report; UCRL 50400, vol. 30: Livermore.
  • 21. Campbell, J.L, Papp, T. 2001. Widths of the atomic K–N7 levels. Atomic Data and Nuclear Data Tables; 77: 1–56.
  • 22. Kup Aylikci, N, Tirasoglu, E, Karahan, I, Aylikci, V, Cengiz, E, Apaydin, G. 2010. Alloying effect on K shell X-ray fluorescence parameters and radiative Auger ratios of Co and Zn in ZnxCo1-x alloys. Chemical Physics Letters; 484: 368-373.
  • 23. Kup Aylikci, N, Tirasoglu, E, Karahan, I, Aylikci, V, Eskil, M, Cengiz, E. 2010. Alloying effect on K X-ray intensity ratios, K X-ray production cross-sections and radiative Auger ratios in superalloys constitute from Al, Ni and Mo elements. Chemical Physics; 377: 100-108.
  • 24. Cooper, J.N. 1944. Auger Transitions and Widths of X-Ray Energy Levels. Physical Review; 65: 155.

The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV

Yıl 2019, , 57 - 64, 22.03.2019
https://doi.org/10.18466/cbayarfbe.459295

Öz

The emission of X-rays in Ka and KLL Auger energy
regions were analyzed for transition metals by using energy dispersive X-ray
fluorescence (EDXRF) system. To acquire more information in this energy region,
the semi-empirical determination of K
a, Auger line-widths
and the L sub-shell level widths were performed. Since K shell is a core shell
for transition metals and it is not easily be affected by valence shell
electronic distributions, K shell fluorescence yields were used for the
semi-empirical determinations. In the experiment, elemental form of transition
metals were excited by 59.5 keV
g-rays from 241Am annular source and the emitted  X-ray photons were counted by Ultra-LEGe
detector with a resolution of 150 eV at 5.9 keV. The obtained results were
compared with the other studies in the literature

Kaynakça

  • 1. Neumann, M, Kuepper, K. 2009. X-ray spectroscopic techniques are powerful tools for electronic structure investigations of transition metal oxides. Surface Science; 603: 1613–1621.
  • 2. Haas, T.W, Grant, J.T, Dooley G.J. 1970. Auger electron spectroscopy of transition metals. Physical Review B; 1: 1449–1459.
  • 3. Nemethy, A, Köver, L, Cserny, I, Varga, D, Barna P.B. 1996. The KLL and KLM Auger Spectra of 3d transition metals Z=23–26. Journal of Electron Spectroscopy and Related Phenomena; 82: 31–40.
  • 4. Ursic, M, Kavcic, M, Budnar, M. 2003. Second order radiative contributions in the K1,3 X-ray spectra of 3d transition metals and their dependence on the chemical state of the element. Nuclear Instruments and Methods in Physics Research B; 211: 7–14.
  • 5. Ito, Y, Tochio, T, Ohashi, H, Yamashita, M, Fukushima, S, Polasik, M, Slabkowska, K, Syrocki, L, Szymanska, E, Rzadkiewicz, J, Indelicato, P, Marques, J.P, Martins, M.C, Santos, J.P, Parente, F. 2016. K1,2 X-ray linewidths, asymmetry indices, and [KM] shake probabilities in elements Ca to Ge and comparison with theory for Ca, Ti and Ge. Physical Review A; 94: 042506.
  • 6. Hölzer, G, Fritsch, M, Deutsch, M, Hartwig, J, Förster, E. 1997. K1,2andK1,3 X-ray emission lines of the 3d transition metals. Physical Review A; 56: 4554.
  • 7. Ito, Y, Tochio, T, Oohashi, H, Vlaicu, A.M. 2006. Contribution of the [1s3d] shake process to K1,2 spectra in 3d elements. Radiation Physics and Chemistry; 75: 1534–1537.
  • 8. Deutsch M,Hölzer G, Hartwig J, Wolf J, Fritsch M, Förster E, Kand K X-ray emission spectra of copper, Physical Review A 1995,51, 283.
  • 9. Sorum, H. 1987. The K1,2 X-ray spectra of the 3d transition metals Cr, Fe, Co, Ni and Cu. Journal of Physics F: Metal Physics; 17: 417–425.
  • 10. Chantler, C.T, Kinnane, M.N, Su, C.-H, Kimpton, J.A. 2006. Characterization of K spectral profiles for vanadium, component redetermination for scandium, titanium, chromium, and manganese and development of satellite structure for Z=21 to Z=25. Physical Review A;73: 012508.
  • 11. Chantler, C.T, Lowe, J.A, Grant, I.P. 2013. High accuracy reconstruction of titanium X-ray emission spectra, including relative intensities, asymmetry and satellites, and ab initio determination of shake magnitudes for transition metals. Journal of Physics B: Atomic Molecular and Optical Physics; 46: 015002.
  • 12. Ito, Y, Tochio, T,Yamashita, M, Fukushima, S,Vlaicu, A.M, Syrocki, L, Slabkowska, K, Weder, E, Polasik, M, Sawicka, K, Indelicato, P, Marques, J.P, Sampaio, J.M, Guerra, M, Santos, J.P, Parente, F. 2018. Structure of high resolution K1,3 X-ray emission spectra for the elements from Ca to Ge. Physical Review A; 97: 052505.
  • 13. Limandri, S.P, Carreras, A.C, Bonetto, R.D, Trincavelli, J.C. 2010. Ksatellite and forbidden transitions in elements with 12≤Z≤30 induced by electron impact. Physical Review A; 81: 012504.
  • 14. Weissmann, R, Koschatzky, R, Schnellhammer, W, Müller, K. 1977. Some Aspects of Auger Electron Spectra of 3d transition metal oxides. Applied Physics; 13: 43–46.
  • 15. Aylikci, V, Kahoul, A, Kup Aylikci, N, Tirasoglu, E, Karahan, I.H. 2015. Empirical, semi-empirical and experimental determination of K X-ray fluorescence parameters of some elements in the atomic range 21≤Z≤30. Spectroscopy Letters; 48: 331–342.
  • 16. Akman, F. 2016. Experimental values of K to Li sub-shell, K to L, and K to M shell vacancy transfer probabilities for some rare earth elements. Applied Radiation and Isotopes; 115: 295-303.
  • 17. Scofield, J.H, Lawrence Livermore National Laboratory Report UCRL-51326 (1973).
  • 18. Scofield, J.H. 1974. Relativistic Hartree-Slater Values for K and L X-Ray Emission Rates. Atomic Data and Nuclear Data Tables; 14: 121–137.
  • 19. Krause, M.O., Oliver, J.H. 1979. Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data; 8: 329–338.
  • 20. Perkins, S. T, Cullen, D. E, Chen, M. H, Hubbell, J.H, Rathkopf, J, Scofield, J.H. 1991. Tables and Graphs of Atomic Subshell Relaxation Data Derived from the LLNL Evaluated Atomic Data Library Z=1-100. Lawrence Livermore National Laboratory Report; UCRL 50400, vol. 30: Livermore.
  • 21. Campbell, J.L, Papp, T. 2001. Widths of the atomic K–N7 levels. Atomic Data and Nuclear Data Tables; 77: 1–56.
  • 22. Kup Aylikci, N, Tirasoglu, E, Karahan, I, Aylikci, V, Cengiz, E, Apaydin, G. 2010. Alloying effect on K shell X-ray fluorescence parameters and radiative Auger ratios of Co and Zn in ZnxCo1-x alloys. Chemical Physics Letters; 484: 368-373.
  • 23. Kup Aylikci, N, Tirasoglu, E, Karahan, I, Aylikci, V, Eskil, M, Cengiz, E. 2010. Alloying effect on K X-ray intensity ratios, K X-ray production cross-sections and radiative Auger ratios in superalloys constitute from Al, Ni and Mo elements. Chemical Physics; 377: 100-108.
  • 24. Cooper, J.N. 1944. Auger Transitions and Widths of X-Ray Energy Levels. Physical Review; 65: 155.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Kadriye Kündeyi Bu kişi benim

Nuray Küp Aylıkcı

Yayımlanma Tarihi 22 Mart 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kündeyi, K., & Küp Aylıkcı, N. (2019). The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(1), 57-64. https://doi.org/10.18466/cbayarfbe.459295
AMA Kündeyi K, Küp Aylıkcı N. The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV. CBUJOS. Mart 2019;15(1):57-64. doi:10.18466/cbayarfbe.459295
Chicago Kündeyi, Kadriye, ve Nuray Küp Aylıkcı. “The Semi-Empirical Determination of K X-Ray, KLL Auger Line and L Subshell Level Widths for 3d Transition Elements at 59.5 KeV”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, sy. 1 (Mart 2019): 57-64. https://doi.org/10.18466/cbayarfbe.459295.
EndNote Kündeyi K, Küp Aylıkcı N (01 Mart 2019) The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 1 57–64.
IEEE K. Kündeyi ve N. Küp Aylıkcı, “The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV”, CBUJOS, c. 15, sy. 1, ss. 57–64, 2019, doi: 10.18466/cbayarfbe.459295.
ISNAD Kündeyi, Kadriye - Küp Aylıkcı, Nuray. “The Semi-Empirical Determination of K X-Ray, KLL Auger Line and L Subshell Level Widths for 3d Transition Elements at 59.5 KeV”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/1 (Mart 2019), 57-64. https://doi.org/10.18466/cbayarfbe.459295.
JAMA Kündeyi K, Küp Aylıkcı N. The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV. CBUJOS. 2019;15:57–64.
MLA Kündeyi, Kadriye ve Nuray Küp Aylıkcı. “The Semi-Empirical Determination of K X-Ray, KLL Auger Line and L Subshell Level Widths for 3d Transition Elements at 59.5 KeV”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 15, sy. 1, 2019, ss. 57-64, doi:10.18466/cbayarfbe.459295.
Vancouver Kündeyi K, Küp Aylıkcı N. The Semi-Empirical Determination of K X-ray, KLL Auger Line and L subshell level widths for 3d transition elements at 59.5 keV. CBUJOS. 2019;15(1):57-64.