BibTex RIS Kaynak Göster

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE - ÜÇ BOYUTLU UZAYDA EULER-LAGRANGE DENKLEMLERİ

Yıl 2014, , 55 - 61, 06.01.2015
https://doi.org/10.18466/cbufbe.21908

Öz

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE

In this article, it is aimed to introduce the Euler-Lagrange equations using a three-dimensional space for mechanical systems. In addition to, the geometrical-physical results related to three-dimensional space for
mechanical systems are also given.

 ÜÇ BOYUTLU UZAYDA EULER-LAGRANGE DENKLEMLERİ

Bu makale ile üç boyutlu uzay kullanılarak mekanik sistemler için Euler-Lagrange denklemlerini tanıtmak amaçlanmıştır. Ek olarak, üç boyutlu uzaydaki mekanik sistemler için geometrik ve fiziksel sonuçlar da verilmiştir.

Kaynakça

  • J. Klein, Escapes Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 12 (1962), 1-124.
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 152 (1989).
  • R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001), 483-542.
  • H. de Vries, Understanding Relativistic Quantum Field Theory, The Hamiltonian and Lagrangian http://www.physics- quest.org/Book_Chapter_Lagrangian.pdf), (2009).
  • M. Tekkoyun, On Para-Euler Lagrange and Para-Hamiltonian Equations, Physics Letters A, 34 (2005), 7-11. W.K.
  • Nanomechanics of Materials, American Scientific Publishers, Stevenson Ranch, CA, (2005).
  • M. Tekkoyun, M. Sari., Bi-para-Mechanical Systems on tThe Bi-Lagrangian Manifold, Physica B-Condensed Matter, 405 (2010), Issue 10, 2390- 23
  • M. Tekkoyun, Y. Yayli, Mechanical Systems on Generalized-Quaternionic IJGMMP, 8 (2011), No. 7, 1-13. Kähler Manifolds,
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-Kähler.Weyl Manifolds, IJGMMP, 10 (2013). No.5, 1-8
  • O. Enge, P. Maiber, Multibody System Dynamics, Modelling Eelectromechanical Systems with Electrical Switching Components Using the Linear Complementarity System Dynamics, 13 (2005), No.4, 21-445. Problem, Multibody
  • D. McDu and D. Salamon, J-Holomorphic Curves http://www.math.sunysb.edu/~dusa/jholsm.pdf. Cohomology, A. Newlander and L. Nirenberg, Complex Analytic Manifolds. Ann. of Math. 65 (1957), 391-404. in Almost Complex

EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE

Yıl 2014, , 55 - 61, 06.01.2015
https://doi.org/10.18466/cbufbe.21908

Öz

In this article, it is aimed to introduce the Euler-Lagrange equations using a three-dimensional space for mechanical systems. In addition to, the geometrical-physical results related to three-dimensional space for
mechanical systems are also given.

 

Kaynakça

  • J. Klein, Escapes Variationnels et Mécanique, Ann. Inst. Fourier, Grenoble, 12 (1962), 1-124.
  • M. De Leon, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 152 (1989).
  • R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, (2001), 483-542.
  • H. de Vries, Understanding Relativistic Quantum Field Theory, The Hamiltonian and Lagrangian http://www.physics- quest.org/Book_Chapter_Lagrangian.pdf), (2009).
  • M. Tekkoyun, On Para-Euler Lagrange and Para-Hamiltonian Equations, Physics Letters A, 34 (2005), 7-11. W.K.
  • Nanomechanics of Materials, American Scientific Publishers, Stevenson Ranch, CA, (2005).
  • M. Tekkoyun, M. Sari., Bi-para-Mechanical Systems on tThe Bi-Lagrangian Manifold, Physica B-Condensed Matter, 405 (2010), Issue 10, 2390- 23
  • M. Tekkoyun, Y. Yayli, Mechanical Systems on Generalized-Quaternionic IJGMMP, 8 (2011), No. 7, 1-13. Kähler Manifolds,
  • Z. Kasap and M. Tekkoyun, Mechanical Systems on Almost Para/Pseudo-Kähler.Weyl Manifolds, IJGMMP, 10 (2013). No.5, 1-8
  • O. Enge, P. Maiber, Multibody System Dynamics, Modelling Eelectromechanical Systems with Electrical Switching Components Using the Linear Complementarity System Dynamics, 13 (2005), No.4, 21-445. Problem, Multibody
  • D. McDu and D. Salamon, J-Holomorphic Curves http://www.math.sunysb.edu/~dusa/jholsm.pdf. Cohomology, A. Newlander and L. Nirenberg, Complex Analytic Manifolds. Ann. of Math. 65 (1957), 391-404. in Almost Complex
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil EN
Bölüm Makaleler
Yazarlar

Zeki Kasap

Yayımlanma Tarihi 6 Ocak 2015
Yayımlandığı Sayı Yıl 2014

Kaynak Göster

APA Kasap, Z. (2015). EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 10(1), 55-61. https://doi.org/10.18466/cbufbe.21908
AMA Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. Ocak 2015;10(1):55-61. doi:10.18466/cbufbe.21908
Chicago Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10, sy. 1 (Ocak 2015): 55-61. https://doi.org/10.18466/cbufbe.21908.
EndNote Kasap Z (01 Ocak 2015) EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10 1 55–61.
IEEE Z. Kasap, “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”, CBUJOS, c. 10, sy. 1, ss. 55–61, 2015, doi: 10.18466/cbufbe.21908.
ISNAD Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 10/1 (Ocak 2015), 55-61. https://doi.org/10.18466/cbufbe.21908.
JAMA Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. 2015;10:55–61.
MLA Kasap, Zeki. “EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 1, 2015, ss. 55-61, doi:10.18466/cbufbe.21908.
Vancouver Kasap Z. EULER-LAGRANGE EQUATIONS ON THREE-DIMENSIONAL SPACE. CBUJOS. 2015;10(1):55-61.