Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 15 Sayı: 2, 199 - 204, 30.06.2019
https://doi.org/10.18466/cbayarfbe.518736

Öz

Kaynakça

  • 1. Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, 1986.
  • 2. Box, GEP. 1985. Discussion of off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology; 17: 198-206.
  • 3. Vining, GG, Myers RH. 1990. Combining Taguchi and response surface philosophies: A dual response approach. Journal of Quality Technology; 22(1): 38-45.
  • 4. Box, GEP, Wilson, KB. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society; 13: 1-45.
  • 5. Del Castillo, E, Montgomery, DC. 1993. A nonlinear programming solution to the dual response problem. Journal of Quality Technology; 25: 199-204.
  • 6. Lin, DKJ, Tu, W. 1995. Dual response surface. Journal of Quality Technology; 27(1):34-39.
  • 7. Copeland, KA, Nelson, PR. 1996. Dual response optimization via direct function minimization. Journal of Quality Technology; 28(1): 331-336.
  • 8. Köksoy, O, Doganaksoy, N. 2003. Joint optimization of mean and standard deviation in response surface experimentation. Journal of Quality Technology; 35(3): 239-252.
  • 9. Shoemaker, AC, Tsui, KL, Wu, CFJ. 1991. Economical experimentation methods for robust parameter design. Technometrics; 33: 415-427.
  • 10. Lucas, JM. 1994. How to achieve a robust process using response surface methodology. Journal of Quality Technology; 26(4): 248-260.
  • 11. Zeybek, M, Köksoy, O. 2016. Optimization of correlated multi-response quality engineering by the upside-down normal loss function. Engineering Optimization; 48: 1419-1431. 12. Zeybek, M. 2018. Process capability: A new criterion for loss function–based quality improvement. Süleyman Demirel University Journal of Natural and Applied Sciences; 22: 470-477.
  • 13. Elsayed, EA, Chen, A. 1993. Optimal levels of process parameters for products with multiple characteristics. Journal of Production Research; 31(5):1117-1132.
  • 14. Tan, MHY, Ng, SH. 2009. Estimation of the mean and variance response surfaces when the means and variances of the variables are unknown. IIE Transactions; 41(11): 942-956.
  • 15. Quyang, L, Ma, Y, Byun, JH, Wang, J, Tu Y. 2016. An interval approach to robust design with parameter uncertainty. International Journal of Production Research; 54(11): 3201-3215.
  • 16. Miro-Quesada, G, DelCastillo, E, Peterson, PP. 2004. A Bayesian approach for multiple response surface optimization in the presence of noise variables. Journal of Applied Statistics; 31(3): 251-270.
  • 17. Bisgaard, S, Fuller, H. 1994. Analysis of factorial experiments with defects or defectives as the response. Quality Engineering; 7(2):429-443.
  • 18. Box, G, Fung, C. 1994. Is Your Robust Design Procedure Robust?. Quality Engineering; 6(3): 503–514.
  • 19. Nelder, JA, Lee, Y. 1991. Generalized linear models for the analysis of Taguchi-type experiments. Applied Stochastic Models and Data Analysis; 7:107-120.
  • 20. Myers, WR, Brenneman, WA, Myers, RH. 2005. A dual response approach to robust parameter design for a generalized linear model. Journal of Quality Technology; 37:130-138.
  • 21. Boylan, GL, Cho, BR. 2013. Comparative studies on the high-variability embedded robust parameter design from the perspective of estimators. Computers and Industrial Engineering; 64: 442-452.
  • 22. Zeybek, M, Köksoy, O. 2018. The effects of gamma noise on quality improvement. Communications in Statistics-Simulation and Computation; 48: 1-15.
  • 23. Johnson, JN. 1978. Modified t tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association; 73 (363): 536-544.
  • 24. Boukezzoula, R, Galichet, S, Bisserier, A. 2011. A Midpoint–Radius approach to regression with interval data. International Journal of Approximate Reasoning; 52: 1257-1271.
  • 25. Köksoy, O. 2006. Multiresponse robust design: Mean square error (MSE) criterion. Applied Mathematics and Computation; 175: 1716-1729.
  • 26. Ding, R, Lin, DKJ, Wei, D. 2004. Dual-response surface optimization: A weighted MSE approach. Quality Engineering; 16(3):377-385.
  • 27. Box, GEP, Draper, NR. Empricial model-building and response surface; John Wiley & Sons, New York, NY, 1987.
  • 28. Oyeyemi, GM. 2004. Treatment of non-normal responses from designed experiments. Journal of the Nigerian Statistical Association; 17: 8-19.

Confidence Interval based Quality Improvement for Non-normal Responses

Yıl 2019, Cilt: 15 Sayı: 2, 199 - 204, 30.06.2019
https://doi.org/10.18466/cbayarfbe.518736

Öz

Robust parameter design is an effective tool to determine the optimal
operating conditions of a system. Because of its practicability and usefulness,
the widespread applications of robust design techniques provide major quality
improvements. The usual assumptions of robust parameter design are that
normally distributed experimental data and no contamination due to outliers. Optimizing
an objective function under the normality assumption for a skewed data in
dual-response modeling may result in misleading fit and operating conditions
located far from the optimal values. This creates a chain of degradation in the
production phase, e.g., poor quality products. This paper focuses on skewed
experimental data. The proposed approach is constructed on the confidence
interval of the process mean which makes the system median unbiased for the
mean using the skewness information of the data. 
The response modeling of the midpoint of the
interval is proposed as a location performance response. The main advantages of
the proposed approach are that it gives a robust solution due to the skewed
structure of the experimental data distribution and does not need any
transformation which causes any loss of information in estimation of the mean
response. The procedure and the validity of the proposed approach are
illustrated on a popular example, the printing process study

Kaynakça

  • 1. Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, 1986.
  • 2. Box, GEP. 1985. Discussion of off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology; 17: 198-206.
  • 3. Vining, GG, Myers RH. 1990. Combining Taguchi and response surface philosophies: A dual response approach. Journal of Quality Technology; 22(1): 38-45.
  • 4. Box, GEP, Wilson, KB. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society; 13: 1-45.
  • 5. Del Castillo, E, Montgomery, DC. 1993. A nonlinear programming solution to the dual response problem. Journal of Quality Technology; 25: 199-204.
  • 6. Lin, DKJ, Tu, W. 1995. Dual response surface. Journal of Quality Technology; 27(1):34-39.
  • 7. Copeland, KA, Nelson, PR. 1996. Dual response optimization via direct function minimization. Journal of Quality Technology; 28(1): 331-336.
  • 8. Köksoy, O, Doganaksoy, N. 2003. Joint optimization of mean and standard deviation in response surface experimentation. Journal of Quality Technology; 35(3): 239-252.
  • 9. Shoemaker, AC, Tsui, KL, Wu, CFJ. 1991. Economical experimentation methods for robust parameter design. Technometrics; 33: 415-427.
  • 10. Lucas, JM. 1994. How to achieve a robust process using response surface methodology. Journal of Quality Technology; 26(4): 248-260.
  • 11. Zeybek, M, Köksoy, O. 2016. Optimization of correlated multi-response quality engineering by the upside-down normal loss function. Engineering Optimization; 48: 1419-1431. 12. Zeybek, M. 2018. Process capability: A new criterion for loss function–based quality improvement. Süleyman Demirel University Journal of Natural and Applied Sciences; 22: 470-477.
  • 13. Elsayed, EA, Chen, A. 1993. Optimal levels of process parameters for products with multiple characteristics. Journal of Production Research; 31(5):1117-1132.
  • 14. Tan, MHY, Ng, SH. 2009. Estimation of the mean and variance response surfaces when the means and variances of the variables are unknown. IIE Transactions; 41(11): 942-956.
  • 15. Quyang, L, Ma, Y, Byun, JH, Wang, J, Tu Y. 2016. An interval approach to robust design with parameter uncertainty. International Journal of Production Research; 54(11): 3201-3215.
  • 16. Miro-Quesada, G, DelCastillo, E, Peterson, PP. 2004. A Bayesian approach for multiple response surface optimization in the presence of noise variables. Journal of Applied Statistics; 31(3): 251-270.
  • 17. Bisgaard, S, Fuller, H. 1994. Analysis of factorial experiments with defects or defectives as the response. Quality Engineering; 7(2):429-443.
  • 18. Box, G, Fung, C. 1994. Is Your Robust Design Procedure Robust?. Quality Engineering; 6(3): 503–514.
  • 19. Nelder, JA, Lee, Y. 1991. Generalized linear models for the analysis of Taguchi-type experiments. Applied Stochastic Models and Data Analysis; 7:107-120.
  • 20. Myers, WR, Brenneman, WA, Myers, RH. 2005. A dual response approach to robust parameter design for a generalized linear model. Journal of Quality Technology; 37:130-138.
  • 21. Boylan, GL, Cho, BR. 2013. Comparative studies on the high-variability embedded robust parameter design from the perspective of estimators. Computers and Industrial Engineering; 64: 442-452.
  • 22. Zeybek, M, Köksoy, O. 2018. The effects of gamma noise on quality improvement. Communications in Statistics-Simulation and Computation; 48: 1-15.
  • 23. Johnson, JN. 1978. Modified t tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association; 73 (363): 536-544.
  • 24. Boukezzoula, R, Galichet, S, Bisserier, A. 2011. A Midpoint–Radius approach to regression with interval data. International Journal of Approximate Reasoning; 52: 1257-1271.
  • 25. Köksoy, O. 2006. Multiresponse robust design: Mean square error (MSE) criterion. Applied Mathematics and Computation; 175: 1716-1729.
  • 26. Ding, R, Lin, DKJ, Wei, D. 2004. Dual-response surface optimization: A weighted MSE approach. Quality Engineering; 16(3):377-385.
  • 27. Box, GEP, Draper, NR. Empricial model-building and response surface; John Wiley & Sons, New York, NY, 1987.
  • 28. Oyeyemi, GM. 2004. Treatment of non-normal responses from designed experiments. Journal of the Nigerian Statistical Association; 17: 8-19.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Melis Zeybek

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 15 Sayı: 2

Kaynak Göster

APA Zeybek, M. (2019). Confidence Interval based Quality Improvement for Non-normal Responses. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 199-204. https://doi.org/10.18466/cbayarfbe.518736
AMA Zeybek M. Confidence Interval based Quality Improvement for Non-normal Responses. CBUJOS. Haziran 2019;15(2):199-204. doi:10.18466/cbayarfbe.518736
Chicago Zeybek, Melis. “Confidence Interval Based Quality Improvement for Non-Normal Responses”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15, sy. 2 (Haziran 2019): 199-204. https://doi.org/10.18466/cbayarfbe.518736.
EndNote Zeybek M (01 Haziran 2019) Confidence Interval based Quality Improvement for Non-normal Responses. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15 2 199–204.
IEEE M. Zeybek, “Confidence Interval based Quality Improvement for Non-normal Responses”, CBUJOS, c. 15, sy. 2, ss. 199–204, 2019, doi: 10.18466/cbayarfbe.518736.
ISNAD Zeybek, Melis. “Confidence Interval Based Quality Improvement for Non-Normal Responses”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15/2 (Haziran 2019), 199-204. https://doi.org/10.18466/cbayarfbe.518736.
JAMA Zeybek M. Confidence Interval based Quality Improvement for Non-normal Responses. CBUJOS. 2019;15:199–204.
MLA Zeybek, Melis. “Confidence Interval Based Quality Improvement for Non-Normal Responses”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 15, sy. 2, 2019, ss. 199-04, doi:10.18466/cbayarfbe.518736.
Vancouver Zeybek M. Confidence Interval based Quality Improvement for Non-normal Responses. CBUJOS. 2019;15(2):199-204.