Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 20 Sayı: 1, 16 - 22, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1394435

Öz

Kaynakça

  • [1]. A. Prudnikau, D. I. Shiman, E. Ksendzov, J. Harwell, E. A. Bolotina, P. A. Nikishau, S. V. Kostjuk, I. D. W. Samuel and V. Lesnyak. 2021. Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots. Nanoscale Adv; 3: 1443-1454.
  • [2]. B. M. Saidzhonov, V. B. Zaytsev and R. B. Vasiliev. 2021. Effect of PMMA polymer matrix on optical properties of CdSe nanoplatelets. J Lumin; 237: 118175.
  • [3]. R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych and V. Lesnyak. 2017. Quantum-Dot-in-Polymer Composites via Advanced Surface Engineering. Small Methods; 1: 1700189.
  • [4]. P. D. Cunningham, J. B. Souza, I. Fedin, C. She, B. Lee and D. V. Talapin. 2016. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology. Acs Nano; 10: 5769-5781.
  • [5]. İ. Ç. Keskin, M. Türemiş, M. İ. Katı, R. Kibar and A. Çetin. 2019. Effects of CdS quantum dot in polymer nanocomposites: In terms of luminescence, optic, and thermal results. Radiation Physics and Chemistry; 156: 137-143.
  • [6]. S. Cho, J. Kwag, S. Jeong, Y. Baek and S. Kim. 2013. Highly Fluorescent and Stable Quantum Dot-Polymer-Layered Double Hydroxide Composites. Chem Mater; 25: 1071-1077.
  • [7]. İ. Ç. Keskin, M. Türemiş, M. İ. Katı, R. Kibar, K. Şirin, M. A. Çipiloğlu, M. Kuş, S. Büyükçelebi and A. Çetin. 2017. The radioluminescence and optical behaviour of nanocomposites with CdSeS quantum dot. Journal of Luminescence; 185: 48-54.
  • [8]. E. Banks, Y. Okamoto and Y. Ueba. 1980. Synthesis and Characterization of Rare-Earth Metal-Containing Polymers .1. Fluorescent Properties of Ionomers Containing Dy3+, Er3+, Eu3+, and Sm3+. J Appl Polym Sci; 25: 359-368.
  • [9]. H. Lu, G. F. Li, S. B. Fang and Y. Y. Jiang. 1990. Fluorescent Properties of Polymer Rare-Earth Ion Complexes .2. Poly(Acrylic Acid-Co-Acrylamide) Rare-Earth Ion Complexes. J Appl Polym Sci; 39: 1389-1398.
  • [10]. K. J. Smit and K. P. Ghiggino. 1991. Effect of Polymer Binding on the Spectroscopic Properties of Stilbene-Based Fluorescent Dyes. J Polym Sci Pol Phys; 29: 1397-1405.
  • [11]. E. Chiellini, R. Solaro, G. Galli and A. Ledwith. 1980. Optically-Active Vinyl-Polymers Containing Fluorescent Groups .8. Synthesis and Properties of Co-Polymers of N-Vinylcarbazole and (-)-Menthyl Acrylate and (-)-Menthyl Methacrylate. Macromolecules; 13: 1654-1660.
  • [12]. M. Delfini, M. E. Dicocco, M. Paci, R. Solaro and E. Chiellini. 1985. Optically-Active Vinyl-Polymers Containing Fluorescent Groups .9. C-13-Nmr Spectra of Copolymers of (-)Menthyl Vinyl Ether with N-Vinylcarbazole. Eur Polym J; 21: 723-726.
  • [13]. R. E. Sah. 1981. Stokes Shift of Fluorescent Dyes in the Doped Polymer Matrix. J Lumin; 24-5: 869-872.
  • [14]. C. D. Eisenbach. 1983. Characteristic Features of the Matrix Effect on the Stokes Shift of Fluorescent Dye Molecules in Pure and Plasticized Polymers. J Appl Polym Sci; 28: 1819-1827.
  • [15]. E. T. B. Altakrity, A. D. Jenkins and D. R. M. Walton. 1990. The Synthesis of Polymers Bearing Terminal Fluorescent and Fluorescence-Quenching Groups .2. The Incorporation of Fluorescent and Fluorescence-Quenching Groups by Means of a Direct Termination Process. Makromol Chem; 191: 3069-3072.
  • [16]. R. P. Quirk, J. G. Kim, K. Rodrigues and W. L. Mattice. 1990. Anionic Synthesis and Characterization of Poly(Styrene-Block-Ethylene Oxide) Polymers with Fluorescent-Probes at the Block Junctions. Abstr Pap Am Chem S; 199: 403-Poly.
  • [17]. R. P. Quirk, J. Kim, K. Rodrigues and W. L. Mattice. 1991. Anionic Synthesis and Characterization of Poly(Styrene-Block-Ethylene Oxide) Polymers with Fluorescent-Probes at the Block Junctions. Makromol Chem-M Symp; 42-3: 463-473.
  • [18]. A. Woodward, N. Sayresmith, J. Sailer, K. Sandor and M. Walter. 2019. Fluorescent thiazolothiazole viologen materials for energy storage: Photochemistry, electrochromism, and photoluminescence. Abstr Pap Am Chem S; 257.
  • [19]. Z. Y. Zhang, Y. A. Chen, W. Y. Hung, W. F. Tang, Y. H. Hsu, C. L. Chen, F. Y. Meng and P. T. Chou. 2016. Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chem Mater; 28: 8815-8824.
  • [20]. Q. Peng, J. B. Peng, E. T. Kang, K. G. Neoh and Y. Cao. 2005. Synthesis and electroluminescent properties of copolymers based on fluorene and 2,5-di(2-hexyloxyphenyl)thiazolothiazole. Macromolecules; 38: 7292-7298.
  • [21]. S. Ando, J. Nishida, Y. Inoue, S. Tokito and Y. Yamashita. 2004. Synthesis, physical properties, and field-effect transistors of novel thiophene/thiazolothiazole co-oligomers. J Mater Chem; 14: 1787-1790.
  • [22]. I. Osaka, G. Sauve, R. Zhang, T. Kowalewski and R. D. McCullough. 2007. Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater; 19: 4160-+.
  • [23]. D. Bevk, L. Marin, L. Lutsen, D. Vanderzande and W. Maes. 2013. Thiazolo[5,4-d]thiazoles - promising building blocks in the synthesis of semiconductors for plastic electronics. Rsc Adv; 3: 11418-11431.
  • [24]. G. Reginato, A. Mordini, L. Zani, M. Calamante and A. Dessi. 2016. Photoactive Compounds Based on the Thiazolo[5,4-d]thiazole Core and Their Application in Organic and Hybrid Photovoltaics. Eur J Org Chem; 2016: 233-251.
  • [25]. Z. Dikmen and V. Bütün. 2021. Thiazolo thiazole based cross-linker to prepare highly fluorescent smart films with tunable emission wavelength and their multi-responsive usage. European Polymer Journal; 159: 110759.
  • [26]. Z. Dikmen and V. Bütün. Multi-Analyte Sensitive Fluorophore Cross-Linked Nanofibers Based Antimicrobial Surface Enabling Bacterial Detection and Their Usage as Crystal Growth Template. Macromolecular Materials and Engineering; n/a: 2300226.
  • [27]. O. Turhan, Z. Dikmen and V. Bütün. 2023. Novel approach to increase chemosensing ability of fluorophore via cross-linked hydrogel film formation. Journal of Photochemistry and Photobiology A: Chemistry; 443: 114828.
  • [28]. Z. Dikmen, G. Dikmen and V. Bütün. 2023. Fluorophore-assisted green fabrication of flexible and cost-effective Ag nanoparticles decorated PVA nanofibers for SERS based trace detection. Journal of Photochemistry and Photobiology A: Chemistry; 445: 115074.
  • [29]. Z. Dikmen, O. Turhan, A. Özbal and V. Bütün. 2022. In-situ formation of fluorophore cross-linked micellar thick films and usage as drug delivery material for Propranolol HCl. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 279: 121452.
  • [30]. N. Yamada, H. Noguchi, Y. Orimoto, Y. Kuwahara, M. Takafuji, S. Pathan, R. Oda, A. Mahammadali Rahimli, M. Ahmed Ramazanov and H. Ihara. 2019. Emission-Color Control in Polymer Films by Memorized Fluorescence Solvatochromism in a New Class of Totally Organic Fluorescent Nanogel Particles. Chemistry – A European Journal; 25: 10141-10148.
  • [31]. Y. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang and Y. Zhao. 2018. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci Adv; 4: eaas9732.
  • [32]. Y. S. Soliman, A. A. Abdel-Fattah, A. A. Hamed and A. M. M. Bayomi. 2018. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter. Radiat Phys Chem; 144: 56-62.
  • [33]. Z. Yu, B. Li, J. Chu and P. Zhang. 2018. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohyd Polym; 184: 214-220.
  • [34]. D. Kumar, S. Umrao, H. Mishra, R. R. Srivastava, M. Srivastava, A. Srivastava and S. K. Srivastava. 2017. Eu:Y2O3 highly dispersed fluorescent PVA film as turn off luminescent probe for enzyme free detection of H2O2. Sensor Actuat B-Chem; 247: 170-178.
  • [35]. H. Kim and J. Y. Chang. 2014. Reversible Thermochromic Polymer Film Embedded with Fluorescent Organogel Nanofibers. Langmuir; 30: 13673-13679.
  • [36]. G. Kwak, S. Fukao, M. Fujiki, T. Sakaguchi and T. Masuda. 2006. Temperature-Dependent, Static, and Dynamic Fluorescence Properties of Disubstituted Acetylene Polymer Films. Chem Mater; 18: 2081-2085.
  • [37]. G. He, N. Yan, J. Y. Yang, H. Y. Wang, L. P. Ding, S. W. Yin and Y. Fang. 2011. Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules; 44: 4759-4766.
  • [38]. S.-J. Lim, B.-K. An and S. Y. Park. 2005. Bistable Photoswitching in the Film of Fluorescent Photochromic Polymer:  Enhanced Fluorescence Emission and Its High Contrast Switching. Macromolecules; 38: 6236-6239.
  • [39]. L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne and L. Manna. 2007. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters; 7: 2942-2950.
  • [40]. Z. Dikmen. 2024. Gold-tipped CdSe/CdZnS colloidal quantum wells as non-quenching plasmonic particles for optical applications. Optical Materials; 147: 114761.
  • [41]. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos. 1997. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society; 119: 7019-7029.
  • [42]. T. Duan, J. Ai, X. Cui, X. Feng, Y. Duan, L. Han, J. Jiang and S. Che. 2021. Spontaneous chiral self-assembly of CdSe@CdS nanorods. Chem; 7: 2695-2707.
  • [43]. W.-C. Wang, H.-Y. Wang, T.-Y. Chen, C.-T. Tsai, C.-H. Cheng, H.-C. Kuo and G.-R. Lin. 2019. CdSe/ZnS core-shell quantum dot assisted color conversion of violet laser diode for white lighting communication. Nanophotonics; 8: 2189-2201.
  • [44]. N. Yin, S. Zhao, P. Li and L. Liu. 2018. One-pot synthesis of Ag nanoparticle/Ag-doped SiO2 composite film and their enhancement effect for CdSe QDs. Functional Materials Letters; 11: 1950008.
  • [45]. J. Wang, C. Guo, Y. Yu, H. Yin, X. Liu and Y. Jiang. 2015. Self-doped 3-hexylthiophene-b-sodium styrene sulfonate block copolymer: synthesis and its organization with CdSe quantum dots. RSC Advances; 5: 17905-17914.
  • [46]. A. T. Isik, F. Shabani, F. Isik, S. Kumar, S. Delikanli and H. V. Demir. 2023. Simultaneous Dual-Color Amplified Spontaneous Emission and Lasing from Colloidal Quantum Well Gain Media in their Own Layered Waveguide and Cavity. Laser & Photonics Reviews; 17: 2300091.
  • [47]. M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan and T. Wang. 2017. Monolithically multi-color lasing from an InGaN microdisk on a Si substrate. Scientific Reports; 7: 10086.
  • [48]. M. Schubert, L. Woolfson, I. R. M. Barnard, A. M. Dorward, B. Casement, A. Morton, G. B. Robertson, P. L. Appleton, G. B. Miles, C. S. Tucker, S. J. Pitt and M. C. Gather. 2020. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nature Photonics; 14: 452-458.
  • [49]. S. Han, W. Zhang, B. Qiu, H. Dong, W. Chen, M. Chu, Y. Liu, X. Yang, F. Hu and Y. S. Zhao. 2018. Controlled Assembly of Organic Composite Microdisk/Microwire Heterostructures for Output Coupling of Dual-Color Lasers. Advanced Optical Materials; 6: 1701077.
  • [50]. T. Pan, D. Lu, H. Xin and B. Li. 2021. Biophotonic probes for bio-detection and imaging. Light: Science & Applications; 10: 124.
  • [51]. C. Tapeinos, E. K. Efthimiadou, N. Boukos, C. A. Charitidis, M. Koklioti and G. Kordas. 2013. Microspheres as therapeutic delivery agents: synthesis and biological evaluation of pH responsiveness. Journal of Materials Chemistry B; 1: 194-203.

Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers

Yıl 2024, Cilt: 20 Sayı: 1, 16 - 22, 27.03.2024
https://doi.org/10.18466/cbayarfbe.1394435

Öz

Semiconductor colloidal nanocrystals are attractive materials since they can be adapted to polymers to form hybrid materials and are compatible with many optical applications. Here, synthesis of CdSe/CdS nanorods (NRs) via hot injection method is carried out, followed by preparation of hybrid polymer films from polyethylene glycol monomethyl ether-block-poly(glycidyl methacrylate)-block-poly[2-(diethylamino)ethyl methacrylate] triblock copolymer (MPEG-b-PGMA-b-DEAEMA) at a liquid-air interface. The optical properties of the films are finely adjusted to form optically anisotropic (i.e. dual-color emissive) films by using dyes for the other emitter as desired. Thiazolo[5,4-d] thiazole (TTz)-based dye and 6-carboxy fluorescein were used for this purpose. Tunable emission of TTz dye from blue to green dependent on changing pH value resulted in blue-green emissive polymer films, while red emission of CdSe/CdS NRs caused red emissive films. Phase separation of these materials is achieved by the hexane-insoluble nature of MPEG-b-PGMA-b-DEAEMA and the high solubility of NRs in it. These dual emissive films are promising candidates for waveguides and optical sensors.

Etik Beyan

The author declares that this document does not require ethics committee approval or any special permission.

Teşekkür

This study was supported by the Scientific Research Projects Coordination Unit of Eskisehir Osmangazi University (ESOGU BAP) within the scope of the project numbered FCD-2023-2764.

Kaynakça

  • [1]. A. Prudnikau, D. I. Shiman, E. Ksendzov, J. Harwell, E. A. Bolotina, P. A. Nikishau, S. V. Kostjuk, I. D. W. Samuel and V. Lesnyak. 2021. Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots. Nanoscale Adv; 3: 1443-1454.
  • [2]. B. M. Saidzhonov, V. B. Zaytsev and R. B. Vasiliev. 2021. Effect of PMMA polymer matrix on optical properties of CdSe nanoplatelets. J Lumin; 237: 118175.
  • [3]. R. Lesyuk, B. Cai, U. Reuter, N. Gaponik, D. Popovych and V. Lesnyak. 2017. Quantum-Dot-in-Polymer Composites via Advanced Surface Engineering. Small Methods; 1: 1700189.
  • [4]. P. D. Cunningham, J. B. Souza, I. Fedin, C. She, B. Lee and D. V. Talapin. 2016. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology. Acs Nano; 10: 5769-5781.
  • [5]. İ. Ç. Keskin, M. Türemiş, M. İ. Katı, R. Kibar and A. Çetin. 2019. Effects of CdS quantum dot in polymer nanocomposites: In terms of luminescence, optic, and thermal results. Radiation Physics and Chemistry; 156: 137-143.
  • [6]. S. Cho, J. Kwag, S. Jeong, Y. Baek and S. Kim. 2013. Highly Fluorescent and Stable Quantum Dot-Polymer-Layered Double Hydroxide Composites. Chem Mater; 25: 1071-1077.
  • [7]. İ. Ç. Keskin, M. Türemiş, M. İ. Katı, R. Kibar, K. Şirin, M. A. Çipiloğlu, M. Kuş, S. Büyükçelebi and A. Çetin. 2017. The radioluminescence and optical behaviour of nanocomposites with CdSeS quantum dot. Journal of Luminescence; 185: 48-54.
  • [8]. E. Banks, Y. Okamoto and Y. Ueba. 1980. Synthesis and Characterization of Rare-Earth Metal-Containing Polymers .1. Fluorescent Properties of Ionomers Containing Dy3+, Er3+, Eu3+, and Sm3+. J Appl Polym Sci; 25: 359-368.
  • [9]. H. Lu, G. F. Li, S. B. Fang and Y. Y. Jiang. 1990. Fluorescent Properties of Polymer Rare-Earth Ion Complexes .2. Poly(Acrylic Acid-Co-Acrylamide) Rare-Earth Ion Complexes. J Appl Polym Sci; 39: 1389-1398.
  • [10]. K. J. Smit and K. P. Ghiggino. 1991. Effect of Polymer Binding on the Spectroscopic Properties of Stilbene-Based Fluorescent Dyes. J Polym Sci Pol Phys; 29: 1397-1405.
  • [11]. E. Chiellini, R. Solaro, G. Galli and A. Ledwith. 1980. Optically-Active Vinyl-Polymers Containing Fluorescent Groups .8. Synthesis and Properties of Co-Polymers of N-Vinylcarbazole and (-)-Menthyl Acrylate and (-)-Menthyl Methacrylate. Macromolecules; 13: 1654-1660.
  • [12]. M. Delfini, M. E. Dicocco, M. Paci, R. Solaro and E. Chiellini. 1985. Optically-Active Vinyl-Polymers Containing Fluorescent Groups .9. C-13-Nmr Spectra of Copolymers of (-)Menthyl Vinyl Ether with N-Vinylcarbazole. Eur Polym J; 21: 723-726.
  • [13]. R. E. Sah. 1981. Stokes Shift of Fluorescent Dyes in the Doped Polymer Matrix. J Lumin; 24-5: 869-872.
  • [14]. C. D. Eisenbach. 1983. Characteristic Features of the Matrix Effect on the Stokes Shift of Fluorescent Dye Molecules in Pure and Plasticized Polymers. J Appl Polym Sci; 28: 1819-1827.
  • [15]. E. T. B. Altakrity, A. D. Jenkins and D. R. M. Walton. 1990. The Synthesis of Polymers Bearing Terminal Fluorescent and Fluorescence-Quenching Groups .2. The Incorporation of Fluorescent and Fluorescence-Quenching Groups by Means of a Direct Termination Process. Makromol Chem; 191: 3069-3072.
  • [16]. R. P. Quirk, J. G. Kim, K. Rodrigues and W. L. Mattice. 1990. Anionic Synthesis and Characterization of Poly(Styrene-Block-Ethylene Oxide) Polymers with Fluorescent-Probes at the Block Junctions. Abstr Pap Am Chem S; 199: 403-Poly.
  • [17]. R. P. Quirk, J. Kim, K. Rodrigues and W. L. Mattice. 1991. Anionic Synthesis and Characterization of Poly(Styrene-Block-Ethylene Oxide) Polymers with Fluorescent-Probes at the Block Junctions. Makromol Chem-M Symp; 42-3: 463-473.
  • [18]. A. Woodward, N. Sayresmith, J. Sailer, K. Sandor and M. Walter. 2019. Fluorescent thiazolothiazole viologen materials for energy storage: Photochemistry, electrochromism, and photoluminescence. Abstr Pap Am Chem S; 257.
  • [19]. Z. Y. Zhang, Y. A. Chen, W. Y. Hung, W. F. Tang, Y. H. Hsu, C. L. Chen, F. Y. Meng and P. T. Chou. 2016. Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]thiazole ESIPT System. Chem Mater; 28: 8815-8824.
  • [20]. Q. Peng, J. B. Peng, E. T. Kang, K. G. Neoh and Y. Cao. 2005. Synthesis and electroluminescent properties of copolymers based on fluorene and 2,5-di(2-hexyloxyphenyl)thiazolothiazole. Macromolecules; 38: 7292-7298.
  • [21]. S. Ando, J. Nishida, Y. Inoue, S. Tokito and Y. Yamashita. 2004. Synthesis, physical properties, and field-effect transistors of novel thiophene/thiazolothiazole co-oligomers. J Mater Chem; 14: 1787-1790.
  • [22]. I. Osaka, G. Sauve, R. Zhang, T. Kowalewski and R. D. McCullough. 2007. Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater; 19: 4160-+.
  • [23]. D. Bevk, L. Marin, L. Lutsen, D. Vanderzande and W. Maes. 2013. Thiazolo[5,4-d]thiazoles - promising building blocks in the synthesis of semiconductors for plastic electronics. Rsc Adv; 3: 11418-11431.
  • [24]. G. Reginato, A. Mordini, L. Zani, M. Calamante and A. Dessi. 2016. Photoactive Compounds Based on the Thiazolo[5,4-d]thiazole Core and Their Application in Organic and Hybrid Photovoltaics. Eur J Org Chem; 2016: 233-251.
  • [25]. Z. Dikmen and V. Bütün. 2021. Thiazolo thiazole based cross-linker to prepare highly fluorescent smart films with tunable emission wavelength and their multi-responsive usage. European Polymer Journal; 159: 110759.
  • [26]. Z. Dikmen and V. Bütün. Multi-Analyte Sensitive Fluorophore Cross-Linked Nanofibers Based Antimicrobial Surface Enabling Bacterial Detection and Their Usage as Crystal Growth Template. Macromolecular Materials and Engineering; n/a: 2300226.
  • [27]. O. Turhan, Z. Dikmen and V. Bütün. 2023. Novel approach to increase chemosensing ability of fluorophore via cross-linked hydrogel film formation. Journal of Photochemistry and Photobiology A: Chemistry; 443: 114828.
  • [28]. Z. Dikmen, G. Dikmen and V. Bütün. 2023. Fluorophore-assisted green fabrication of flexible and cost-effective Ag nanoparticles decorated PVA nanofibers for SERS based trace detection. Journal of Photochemistry and Photobiology A: Chemistry; 445: 115074.
  • [29]. Z. Dikmen, O. Turhan, A. Özbal and V. Bütün. 2022. In-situ formation of fluorophore cross-linked micellar thick films and usage as drug delivery material for Propranolol HCl. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 279: 121452.
  • [30]. N. Yamada, H. Noguchi, Y. Orimoto, Y. Kuwahara, M. Takafuji, S. Pathan, R. Oda, A. Mahammadali Rahimli, M. Ahmed Ramazanov and H. Ihara. 2019. Emission-Color Control in Polymer Films by Memorized Fluorescence Solvatochromism in a New Class of Totally Organic Fluorescent Nanogel Particles. Chemistry – A European Journal; 25: 10141-10148.
  • [31]. Y. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang and Y. Zhao. 2018. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci Adv; 4: eaas9732.
  • [32]. Y. S. Soliman, A. A. Abdel-Fattah, A. A. Hamed and A. M. M. Bayomi. 2018. A radiation-sensitive monomer of 2,4-hexadiyn-1,6-bis(p-toluene sulphonyl urethane) in PVA as a radiochromic film dosimeter. Radiat Phys Chem; 144: 56-62.
  • [33]. Z. Yu, B. Li, J. Chu and P. Zhang. 2018. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohyd Polym; 184: 214-220.
  • [34]. D. Kumar, S. Umrao, H. Mishra, R. R. Srivastava, M. Srivastava, A. Srivastava and S. K. Srivastava. 2017. Eu:Y2O3 highly dispersed fluorescent PVA film as turn off luminescent probe for enzyme free detection of H2O2. Sensor Actuat B-Chem; 247: 170-178.
  • [35]. H. Kim and J. Y. Chang. 2014. Reversible Thermochromic Polymer Film Embedded with Fluorescent Organogel Nanofibers. Langmuir; 30: 13673-13679.
  • [36]. G. Kwak, S. Fukao, M. Fujiki, T. Sakaguchi and T. Masuda. 2006. Temperature-Dependent, Static, and Dynamic Fluorescence Properties of Disubstituted Acetylene Polymer Films. Chem Mater; 18: 2081-2085.
  • [37]. G. He, N. Yan, J. Y. Yang, H. Y. Wang, L. P. Ding, S. W. Yin and Y. Fang. 2011. Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium. Macromolecules; 44: 4759-4766.
  • [38]. S.-J. Lim, B.-K. An and S. Y. Park. 2005. Bistable Photoswitching in the Film of Fluorescent Photochromic Polymer:  Enhanced Fluorescence Emission and Its High Contrast Switching. Macromolecules; 38: 6236-6239.
  • [39]. L. Carbone, C. Nobile, M. De Giorgi, F. D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I. R. Franchini, M. Nadasan, A. F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne and L. Manna. 2007. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters; 7: 2942-2950.
  • [40]. Z. Dikmen. 2024. Gold-tipped CdSe/CdZnS colloidal quantum wells as non-quenching plasmonic particles for optical applications. Optical Materials; 147: 114761.
  • [41]. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos. 1997. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society; 119: 7019-7029.
  • [42]. T. Duan, J. Ai, X. Cui, X. Feng, Y. Duan, L. Han, J. Jiang and S. Che. 2021. Spontaneous chiral self-assembly of CdSe@CdS nanorods. Chem; 7: 2695-2707.
  • [43]. W.-C. Wang, H.-Y. Wang, T.-Y. Chen, C.-T. Tsai, C.-H. Cheng, H.-C. Kuo and G.-R. Lin. 2019. CdSe/ZnS core-shell quantum dot assisted color conversion of violet laser diode for white lighting communication. Nanophotonics; 8: 2189-2201.
  • [44]. N. Yin, S. Zhao, P. Li and L. Liu. 2018. One-pot synthesis of Ag nanoparticle/Ag-doped SiO2 composite film and their enhancement effect for CdSe QDs. Functional Materials Letters; 11: 1950008.
  • [45]. J. Wang, C. Guo, Y. Yu, H. Yin, X. Liu and Y. Jiang. 2015. Self-doped 3-hexylthiophene-b-sodium styrene sulfonate block copolymer: synthesis and its organization with CdSe quantum dots. RSC Advances; 5: 17905-17914.
  • [46]. A. T. Isik, F. Shabani, F. Isik, S. Kumar, S. Delikanli and H. V. Demir. 2023. Simultaneous Dual-Color Amplified Spontaneous Emission and Lasing from Colloidal Quantum Well Gain Media in their Own Layered Waveguide and Cavity. Laser & Photonics Reviews; 17: 2300091.
  • [47]. M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan and T. Wang. 2017. Monolithically multi-color lasing from an InGaN microdisk on a Si substrate. Scientific Reports; 7: 10086.
  • [48]. M. Schubert, L. Woolfson, I. R. M. Barnard, A. M. Dorward, B. Casement, A. Morton, G. B. Robertson, P. L. Appleton, G. B. Miles, C. S. Tucker, S. J. Pitt and M. C. Gather. 2020. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nature Photonics; 14: 452-458.
  • [49]. S. Han, W. Zhang, B. Qiu, H. Dong, W. Chen, M. Chu, Y. Liu, X. Yang, F. Hu and Y. S. Zhao. 2018. Controlled Assembly of Organic Composite Microdisk/Microwire Heterostructures for Output Coupling of Dual-Color Lasers. Advanced Optical Materials; 6: 1701077.
  • [50]. T. Pan, D. Lu, H. Xin and B. Li. 2021. Biophotonic probes for bio-detection and imaging. Light: Science & Applications; 10: 124.
  • [51]. C. Tapeinos, E. K. Efthimiadou, N. Boukos, C. A. Charitidis, M. Koklioti and G. Kordas. 2013. Microspheres as therapeutic delivery agents: synthesis and biological evaluation of pH responsiveness. Journal of Materials Chemistry B; 1: 194-203.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotonik, Optoelektronik ve Optik İletişim, Kolloit ve Yüzey Kimyası, Makromoleküler Malzemeler, Malzemelerin Optik Özellikleri
Bölüm Makaleler
Yazarlar

Zeynep Dikmen 0000-0002-1365-6573

Yayımlanma Tarihi 27 Mart 2024
Gönderilme Tarihi 22 Kasım 2023
Kabul Tarihi 9 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 20 Sayı: 1

Kaynak Göster

APA Dikmen, Z. (2024). Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 20(1), 16-22. https://doi.org/10.18466/cbayarfbe.1394435
AMA Dikmen Z. Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers. CBUJOS. Mart 2024;20(1):16-22. doi:10.18466/cbayarfbe.1394435
Chicago Dikmen, Zeynep. “Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20, sy. 1 (Mart 2024): 16-22. https://doi.org/10.18466/cbayarfbe.1394435.
EndNote Dikmen Z (01 Mart 2024) Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20 1 16–22.
IEEE Z. Dikmen, “Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers”, CBUJOS, c. 20, sy. 1, ss. 16–22, 2024, doi: 10.18466/cbayarfbe.1394435.
ISNAD Dikmen, Zeynep. “Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 20/1 (Mart 2024), 16-22. https://doi.org/10.18466/cbayarfbe.1394435.
JAMA Dikmen Z. Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers. CBUJOS. 2024;20:16–22.
MLA Dikmen, Zeynep. “Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 20, sy. 1, 2024, ss. 16-22, doi:10.18466/cbayarfbe.1394435.
Vancouver Dikmen Z. Optically Anisotropic Films of Colloidal Nanocrystals/Photoluminescent Dye Doped Polymers. CBUJOS. 2024;20(1):16-22.