Derleme
BibTex RIS Kaynak Göster

THE EFFECT OF VITAMIN D ON MATERNAL AND FETAL HEALTH: FETAL PROGRAMMING, GENETIC AND EPIGENETIC MECHANISMS

Yıl 2021, Cilt: 8 Sayı: 4, 709 - 714, 31.12.2021
https://doi.org/10.34087/cbusbed.929505

Öz

There are many factors affecting vitamin D homeostasis during pregnancy. Vitamin D requirement increases depending on the bone development of the fetus, especially in the second and last trimesters of pregnancy. In recent years, vitamin D has become a current issue because of the effects of vitamin D other than bone development and its effectiveness in fetal programming. Vitamin D plays a role in the pathogenesis of both maternal and fetal diseases starting from the preconception period. Low prenatal and neonatal 25(OH)D levels are associated with diseases such as schizophrenia, type 1 diabetes, respiratory tract diseases, autoimmune diseases, multiple sclerosis, and cancer in adulthood. Decreasing or increasing maternal 25(OH)D concentration may cause maternal preeclampsia and gestational diabetes; in the fetus, it mainly causes intrauterine developmental disorders, genetic and epigenetic changes. The relationship of vitamin D, which is known for its role in anti-inflammatory effect, calcium metabolism and glucose homeostasis, with epigenetic mechanism is explained by promoter methylation. In addition, high serum 25(OH)D concentration is associated with genetic diseases by causing mutations in some genes (CYP24A1, CYP27B1, CYP2R1). Accordingly, keeping maternal, placental, and fetal vitamin D levels at an optimal level may be an effective mechanism in preventing possible diseases. In this review, we aimed to draw attention to the effects and importance of vitamin D in preconception, pregnancy, and postpartum periods.

Kaynakça

  • Karras, S.N, Wagner, C.L, Castracane, V.D, Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes, Metabolism, 2018, 86, 112-123.
  • Haussler, M.R, Haussler, C.A, Jurutka, P.W, Thompson, P.D, Hsieh, J.C, Remus, L.S, Whitfield, G.K, The vitamin D hormone and its nuclear receptor: molecular actions and disease states, Journal of Endocrinology, 1997, 154(3), 57-73.
  • Cashman, K.D, Sheehy, T, O’Neill, C.M, Is vitamin D deficiency a public health concern for low middle income countries? A systematic literature review, European journal of nutrition, 2019, 58(1), 433-453.
  • Hollis, B.W, Wagner, C.L, The role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes, The Journal of Clinical Endocrinology & Metabolism, 2013, 98(12), 4619-4628.
  • Karras, S.N, Fakhoury, H, Muscogiuri, G, Grant, W.B, van den Ouweland, et al. Maternal vitamin D levels during pregnancy and neonatal health: evidence to date and clinical implications, Therapeutic advances in musculoskeletal disease, 2016, 8(4), 124-135.
  • Hatun, Ş, D vitamini eksikliği ve önlenmesi: Türkiye deneyimi, Türkiye Klinikleri Pediatrik Bilimler-Özel Konular, 2012, 8(2), 4-8.
  • Gürz, A.A, İğde, F.A.A, Dikici, M.F, D vitamininin fetal ve maternal etkileri, Konuralp Medical Journal/Konuralp Tıp Dergisi, 2015, 7(1), 69-75.
  • Amarasekera, M, Prescott, S.L, Palmer, D.J, Nutrition in early life, immune-programming and allergies: the role of epigenetics, Asian Pacific Journal of Allergy and Immunology, 2013, 31(3), 175-182.
  • Purdue-Smithe, A.C, Kim, K, Nobles, C, Schisterman, E.F, Schliep, K.C, Perkins, N.J, Mumford, S.L, The role of maternal preconception vitamin D status in human offspring sex ratio, Nature Communications, 2021, 12(1), 1-9.
  • Hewison, M, The earlier the better: preconception vitamin D and protection against pregnancy loss, The lancet. Diabetes & endocrinology, 2018, 6(9), 680.
  • Libby, P, Ridker, P.M, Maseri, A, Inflammation and atherosclerosis, Circulation, 2002, 105(9), 1135-1143.
  • Zhang, M, Michos, E.D, Wang, G, Wang, X, Mueller, N.T, Associations of cord blood vitamin d and preeclampsia with offspring blood pressure in childhood and adolescence, JAMA network open, 2020, 3(10), e2019046-e2019046.
  • James, J.L, Whitley, G.S, Cartwright, J.E, Pre‐eclampsia: fitting together the placental, immune and cardiovascular pieces, The Journal of pathology, 2010, 221(4), 363-378.
  • Wei S, Audibert F, Fraser W, Maternal plasma 25-hydroxyvitamin D levels, angiogenic factors, and preeclampsia, American Journal of Obstetrics & Gynecology, 2013, 208(5), 390-e1.
  • Özbilen, D.N, Preeklamptik gebelerde vasküler endotelyal büyüme faktörü ve solubl fms benzeri tirozin kinaz–1 düzeyleri ve bunların birbirleri ile olan ilişkileri, Çukurova Üniversitesi, Tıp Fakültesi, 2007, Adana.
  • Smith, T.A, Kirkpatrick, D.R, Kovilam, O, Agrawal, D.K, Immunomodulatory role of vitamin D in the pathogenesis of preeclampsia, Expert review of clinical immunology, 2015, 11(9), 1055-1063.
  • Royle, C, Lim, S, Xu, B, Tooher, J, Ogle, R, Hennessy, A, Effect of hypoxia and exogenous IL-10 on the pro-inflammatory cytokine TNF-α and the anti-angiogenic molecule soluble Flt-1 in placental villous explants, Cytokine, 2009, 47(1), 56-60.
  • Olmos-Ortiz, A, García-Quiroz, J, López-Marure, R, et al., Evidence of sexual dimorphism in placental vitamin D metabolism: testosterone inhibits calcitriol-dependent cathelicidin expression, The Journal of steroid biochemistry and molecular biology, 2016, 163, 173-182. Damm, P, Houshmand-Oeregaard, A, Kelstrup, L, Lauenborg, J, Mathiesen, E.R, Clausen, T.D, Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark, Diabetologia, 2016, 59(7), 1396-1399.
  • Senti, J, Thiele, D.K, Anderson, C.M, Maternal vitamin D status as a critical determinant in gestational diabetes, Journal of Obstetric, Gynecologic & Neonatal Nursing, 2012, 41(3), 328-338.
  • Triunfo, S, Lanzone, A, Lindqvist, P, Low maternal circulating levels of vitamin D as potential determinant in the development of gestational diabetes mellitus, Journal of Endocrinological Investigation, 2017, 40(10), 1049-1059.
  • Salakos, E, Rabeony, T, Courbebaisse, M, Taieb, J, Tsatsaris, V, Guibourdenche, J, Benachi, A, Relationship between vitamin D status in the first trimester of pregnancy and gestational diabetes mellitus-A nested case–control study, Clinical Nutrition, 2021, 40(1), 79-86.
  • Allgrove, J, Physiology of fetal and neonatal calcium metabolism, Encyclopedia of Endocrine Diseases, 2019, 5(2), 335-338.
  • Uday, S, Hoegler, W, Nutritional rickets and osteomalacia in the twenty-first century: revised concepts, public health, and prevention strategies, Current Osteoporosis Reports, 2017, 15(4), 293–302.
  • Kovacs, C.S, Bone metabolism in the fetus and neonate, Pediatric nephrology, 2014, 29(5), 793-803. 26. Curtis, E.M, Moon, R.J, Dennison, E.M, Harvey, N.C, Prenatal calcium and vitamin D intake, and bone mass in later life, Current osteoporosis reports, 2014, 12(2), 194-204.
  • Javaid, M.K, Crozier, S.R, Harvey, N.C, Gale, C. R, Dennison, E.M, Boucher, B.J, Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study, The Lancet, 2006, 367(9504), 36-43.
  • Lawlor, D.A, Wills, A.K, Fraser, A, Sayers, A, Fraser, W.D, Tobias, J.H, Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: a prospective cohort study, The Lancet, 2013, 381(9884), 2176-2183.
  • von Websky, K, Hasan, A.A, Reichetzeder, C, Tsuprykov, O, Hocher, B, Impact of vitamin D on pregnancy-related disorders and on offspring outcome, The Journal of steroid biochemistry and molecular biology, 2018, 180, 51-64.
  • Schlingmann, K.P, Kaufmann, M, Weber, S, Irwin, A, Goos, C, John, U, Konrad, M, Mutations in CYP24A1 and idiopathic infantile hypercalcemia, New England Journal of Medicine, 2011, 365(5), 410-421.
  • Braun, D.A, Lawson, J.A, Gee, H.Y, Halbritter, J, Shril, S, Tan, W, Hildebrandt, F, Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis, Clinical Journal of the American Society of Nephrology, 2016, 11(4), 664-672.
  • Gigante, M, Santangelo, L, Diella, S, Caridi, G, Argentiero, L, Martino, M, Gesualdo, L, Mutational spectrum of CYP24A1 gene in a cohort of italian patients with idiopathic infantile hypercalcemia, Nephron, 2016, 133(3), 193-204.
  • Shah, A.D, Hsiao, E.C, O'Donnell, B, Salmeen, K, Nussbaum, R, Krebs, M, Block-Kurbisch, I, Maternal hypercalcemia due to failure of 1, 25-dihydroxyvitamin-D3 catabolism in a patient with CYP24A1 mutations, The Journal of Clinical Endocrinology & Metabolism, 2015, 100(8), 2832-2836.
  • Dinour, D, Davidovits, M, Aviner, S, Ganon, L, Michael, L, Modan-Moses, D, Holtzman, E.J, Maternal and infantile hypercalcemia caused by vitamin-D-hydroxylase mutations and vitamin D intake, Pediatric nephrology, 2015, 30(1), 145-152.
  • Forlenza, G.P, Calhoun, A, Beckman, K.B, Halvorsen, T, Hamdoun, E, Zierhut, H, Petryk, A, Next generation sequencing in endocrine practice, Molecular genetics and metabolism, 2015, 115(2-3), 61-71.
  • Barouki, R, Melén, E, Herceg, Z, Beckers, J, Chen, J, Karagas, M, Nohara, K, Epigenetics as a mechanism linking developmental exposures to long-term toxicity, Environment international, 2018, 114, 77-86.
  • Hossein-nezhad, A, Holick, M.F, Vitamin D for health: a global perspective, In Mayo clinic proceedings, 2013, 88(7), 720-755.
  • Reichetzeder, C, Putra, S.E.D, Li, J, Hocher, B, Developmental origins of disease-crisis precipitates change, Cellular Physiology and Biochemistry, 2016, 39(3), 919-938.
  • Zhou, Y, Zhao, L.J, Xu, X, Ye, A, Travers-Gustafson, D, Zhou, B, Lappe, J.M, DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation, The Journal of steroid biochemistry and molecular biology, 2014, 144, 207-214.
  • Sharma, S.S, Jangale, N.M, Harsulkar, A.M, Gokhale, M.K, Joshi, B.N, Chronic maternal calcium and 25-hydroxyvitamin D deficiency in Wistar rats programs abnormal hepatic gene expression leading to hepatic steatosis in female offspring, The Journal of nutritional biochemistry, 2017, 43, 36-46.
  • Urrutia-Pereira, M, Solé, D, Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood, Revista Paulista de Pediatria (English Edition), 2015, 33(1), 104-113.
  • Hornsby, E, Pfeffer, P.E, Laranjo, N, Cruikshank, W, Tuzova, M, Litonjua, A.A, Hawrylowicz, C, Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial, Journal of Allergy and Clinical Immunology, 2018, 141(1), 269-278.
  • Rytter, D, Bech, B.H, Halldorsson, T.I, Henriksen, T.B, Grandström, C, Cohen, A, Olsen, S. F, Maternal vitamin D status at week 30 of gestation and offspring cardio-metabolic health at 20 years: a prospective cohort study over two decades, PloS one, 2016, 11(10), e0164758.
  • Chakhtoura, M, Nassar, A, Arabi, A, Cooper, C, Harvey, N, Mahfoud, Z, Fuleihan, G.E.H, Effect of vitamin D replacement on maternal and neonatal outcomes: a randomised controlled trial in pregnant women with hypovitaminosis D. A protocol, BMJ open, 2016, 6(3), e010818.
  • Fetahu, I, Höbaus, J, E. Kállay, Vitamin D and the epigenome, Front Physiol, 2014, 5, 164.
  • Xue, J, Schoenrock, S.A, Valdar, W, Tarantino, L.M, Ideraabdullah, F.Y, Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations, Clinical epigenetics, 2016, 8(1), 1-16.
  • Junge, K.M, Bauer, T, Geissler, S, Hirche, F, Thürmann, L, Bauer, M, Lehmann, I, Increased vitamin D levels at birth and in early infancy increase offspring allergy risk--evidence for involvement of epigenetic mechanisms, Journal of Allergy and Clinical Immunology, 2016, 137(2), 610.
  • Suderman, M, Stene, L.C, Bohlin, J, Page, C.M, Holvik, K, Parr, C.L, Nystad, W, 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC), The Journal of steroid biochemistry and molecular biology, 2016, 159, 102-109.

D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR

Yıl 2021, Cilt: 8 Sayı: 4, 709 - 714, 31.12.2021
https://doi.org/10.34087/cbusbed.929505

Öz

Gebelikte D vitamini homeostazını etkileyen birçok faktör vardır. Özellikle gebeliğin ikinci ve son trimesterinde fetüsün kemik gelişimine bağlı olarak D vitamini gereksinimi artmaktadır. Son yıllarda D vitamininin kemik gelişimi dışındaki etkilerinin ortaya çıkması ve fetal programlamada etkili olması nedeniyle, D vitamini güncel bir konu haline gelmiştir. D vitamini prekonsepsiyonel dönemden itibaren hem maternal hem de fetal hastalıkların patogenezinde rol oynamaktadır. Düşük prenatal ve neonatal 25(OH)D seviyeleri yetişkin dönemde şizofreni, tip 1 diyabet, solunum yolu hastalıkları, otoimmün hastalıklar, multiple skleroz ve kanser gibi hastalıklarla ilişkilendirilmektedir. Azalmış veya artmış maternal 25(OH)D konsantrasyonu annede preeklemsi ve gestasyonel diyabet gibi hastalıklara; fetüste ise başlıca intrauterin gelişim bozukluklarına, genetik ve epigenetik değişikliklere neden olmaktadır. Antiinflamatuar yanıtta kalsiyum metabolizmasında ve glukoz homeostazında görev alması ile bilinen D vitamininin, epigenetik mekanizma ile ilişkisi promotor metilasyonuyla açıklanmaktadır. Ayrıca yüksek serum 25(OH)D konsantrasyonu bazı genlerde (CYP24A1, CYP27B1, CYP2R1) mutasyona neden olarak genetik hastalıklarla ilişkilendirilmektedir. Bu doğrultuda maternal, plasental ve fetal D vitamini düzeylerinin optimal seviyede seyretmesi, olası hastalıkları önlemede etkin bir mekanizma olabilir. Bu derlemede, D vitaminin söz konusu prekonsepsiyonel, gebelik ve doğum sonrası dönemdeki etkilerine ve önemine dikkat çekmek istenilmiştir.

Kaynakça

  • Karras, S.N, Wagner, C.L, Castracane, V.D, Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes, Metabolism, 2018, 86, 112-123.
  • Haussler, M.R, Haussler, C.A, Jurutka, P.W, Thompson, P.D, Hsieh, J.C, Remus, L.S, Whitfield, G.K, The vitamin D hormone and its nuclear receptor: molecular actions and disease states, Journal of Endocrinology, 1997, 154(3), 57-73.
  • Cashman, K.D, Sheehy, T, O’Neill, C.M, Is vitamin D deficiency a public health concern for low middle income countries? A systematic literature review, European journal of nutrition, 2019, 58(1), 433-453.
  • Hollis, B.W, Wagner, C.L, The role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes, The Journal of Clinical Endocrinology & Metabolism, 2013, 98(12), 4619-4628.
  • Karras, S.N, Fakhoury, H, Muscogiuri, G, Grant, W.B, van den Ouweland, et al. Maternal vitamin D levels during pregnancy and neonatal health: evidence to date and clinical implications, Therapeutic advances in musculoskeletal disease, 2016, 8(4), 124-135.
  • Hatun, Ş, D vitamini eksikliği ve önlenmesi: Türkiye deneyimi, Türkiye Klinikleri Pediatrik Bilimler-Özel Konular, 2012, 8(2), 4-8.
  • Gürz, A.A, İğde, F.A.A, Dikici, M.F, D vitamininin fetal ve maternal etkileri, Konuralp Medical Journal/Konuralp Tıp Dergisi, 2015, 7(1), 69-75.
  • Amarasekera, M, Prescott, S.L, Palmer, D.J, Nutrition in early life, immune-programming and allergies: the role of epigenetics, Asian Pacific Journal of Allergy and Immunology, 2013, 31(3), 175-182.
  • Purdue-Smithe, A.C, Kim, K, Nobles, C, Schisterman, E.F, Schliep, K.C, Perkins, N.J, Mumford, S.L, The role of maternal preconception vitamin D status in human offspring sex ratio, Nature Communications, 2021, 12(1), 1-9.
  • Hewison, M, The earlier the better: preconception vitamin D and protection against pregnancy loss, The lancet. Diabetes & endocrinology, 2018, 6(9), 680.
  • Libby, P, Ridker, P.M, Maseri, A, Inflammation and atherosclerosis, Circulation, 2002, 105(9), 1135-1143.
  • Zhang, M, Michos, E.D, Wang, G, Wang, X, Mueller, N.T, Associations of cord blood vitamin d and preeclampsia with offspring blood pressure in childhood and adolescence, JAMA network open, 2020, 3(10), e2019046-e2019046.
  • James, J.L, Whitley, G.S, Cartwright, J.E, Pre‐eclampsia: fitting together the placental, immune and cardiovascular pieces, The Journal of pathology, 2010, 221(4), 363-378.
  • Wei S, Audibert F, Fraser W, Maternal plasma 25-hydroxyvitamin D levels, angiogenic factors, and preeclampsia, American Journal of Obstetrics & Gynecology, 2013, 208(5), 390-e1.
  • Özbilen, D.N, Preeklamptik gebelerde vasküler endotelyal büyüme faktörü ve solubl fms benzeri tirozin kinaz–1 düzeyleri ve bunların birbirleri ile olan ilişkileri, Çukurova Üniversitesi, Tıp Fakültesi, 2007, Adana.
  • Smith, T.A, Kirkpatrick, D.R, Kovilam, O, Agrawal, D.K, Immunomodulatory role of vitamin D in the pathogenesis of preeclampsia, Expert review of clinical immunology, 2015, 11(9), 1055-1063.
  • Royle, C, Lim, S, Xu, B, Tooher, J, Ogle, R, Hennessy, A, Effect of hypoxia and exogenous IL-10 on the pro-inflammatory cytokine TNF-α and the anti-angiogenic molecule soluble Flt-1 in placental villous explants, Cytokine, 2009, 47(1), 56-60.
  • Olmos-Ortiz, A, García-Quiroz, J, López-Marure, R, et al., Evidence of sexual dimorphism in placental vitamin D metabolism: testosterone inhibits calcitriol-dependent cathelicidin expression, The Journal of steroid biochemistry and molecular biology, 2016, 163, 173-182. Damm, P, Houshmand-Oeregaard, A, Kelstrup, L, Lauenborg, J, Mathiesen, E.R, Clausen, T.D, Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark, Diabetologia, 2016, 59(7), 1396-1399.
  • Senti, J, Thiele, D.K, Anderson, C.M, Maternal vitamin D status as a critical determinant in gestational diabetes, Journal of Obstetric, Gynecologic & Neonatal Nursing, 2012, 41(3), 328-338.
  • Triunfo, S, Lanzone, A, Lindqvist, P, Low maternal circulating levels of vitamin D as potential determinant in the development of gestational diabetes mellitus, Journal of Endocrinological Investigation, 2017, 40(10), 1049-1059.
  • Salakos, E, Rabeony, T, Courbebaisse, M, Taieb, J, Tsatsaris, V, Guibourdenche, J, Benachi, A, Relationship between vitamin D status in the first trimester of pregnancy and gestational diabetes mellitus-A nested case–control study, Clinical Nutrition, 2021, 40(1), 79-86.
  • Allgrove, J, Physiology of fetal and neonatal calcium metabolism, Encyclopedia of Endocrine Diseases, 2019, 5(2), 335-338.
  • Uday, S, Hoegler, W, Nutritional rickets and osteomalacia in the twenty-first century: revised concepts, public health, and prevention strategies, Current Osteoporosis Reports, 2017, 15(4), 293–302.
  • Kovacs, C.S, Bone metabolism in the fetus and neonate, Pediatric nephrology, 2014, 29(5), 793-803. 26. Curtis, E.M, Moon, R.J, Dennison, E.M, Harvey, N.C, Prenatal calcium and vitamin D intake, and bone mass in later life, Current osteoporosis reports, 2014, 12(2), 194-204.
  • Javaid, M.K, Crozier, S.R, Harvey, N.C, Gale, C. R, Dennison, E.M, Boucher, B.J, Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study, The Lancet, 2006, 367(9504), 36-43.
  • Lawlor, D.A, Wills, A.K, Fraser, A, Sayers, A, Fraser, W.D, Tobias, J.H, Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: a prospective cohort study, The Lancet, 2013, 381(9884), 2176-2183.
  • von Websky, K, Hasan, A.A, Reichetzeder, C, Tsuprykov, O, Hocher, B, Impact of vitamin D on pregnancy-related disorders and on offspring outcome, The Journal of steroid biochemistry and molecular biology, 2018, 180, 51-64.
  • Schlingmann, K.P, Kaufmann, M, Weber, S, Irwin, A, Goos, C, John, U, Konrad, M, Mutations in CYP24A1 and idiopathic infantile hypercalcemia, New England Journal of Medicine, 2011, 365(5), 410-421.
  • Braun, D.A, Lawson, J.A, Gee, H.Y, Halbritter, J, Shril, S, Tan, W, Hildebrandt, F, Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis, Clinical Journal of the American Society of Nephrology, 2016, 11(4), 664-672.
  • Gigante, M, Santangelo, L, Diella, S, Caridi, G, Argentiero, L, Martino, M, Gesualdo, L, Mutational spectrum of CYP24A1 gene in a cohort of italian patients with idiopathic infantile hypercalcemia, Nephron, 2016, 133(3), 193-204.
  • Shah, A.D, Hsiao, E.C, O'Donnell, B, Salmeen, K, Nussbaum, R, Krebs, M, Block-Kurbisch, I, Maternal hypercalcemia due to failure of 1, 25-dihydroxyvitamin-D3 catabolism in a patient with CYP24A1 mutations, The Journal of Clinical Endocrinology & Metabolism, 2015, 100(8), 2832-2836.
  • Dinour, D, Davidovits, M, Aviner, S, Ganon, L, Michael, L, Modan-Moses, D, Holtzman, E.J, Maternal and infantile hypercalcemia caused by vitamin-D-hydroxylase mutations and vitamin D intake, Pediatric nephrology, 2015, 30(1), 145-152.
  • Forlenza, G.P, Calhoun, A, Beckman, K.B, Halvorsen, T, Hamdoun, E, Zierhut, H, Petryk, A, Next generation sequencing in endocrine practice, Molecular genetics and metabolism, 2015, 115(2-3), 61-71.
  • Barouki, R, Melén, E, Herceg, Z, Beckers, J, Chen, J, Karagas, M, Nohara, K, Epigenetics as a mechanism linking developmental exposures to long-term toxicity, Environment international, 2018, 114, 77-86.
  • Hossein-nezhad, A, Holick, M.F, Vitamin D for health: a global perspective, In Mayo clinic proceedings, 2013, 88(7), 720-755.
  • Reichetzeder, C, Putra, S.E.D, Li, J, Hocher, B, Developmental origins of disease-crisis precipitates change, Cellular Physiology and Biochemistry, 2016, 39(3), 919-938.
  • Zhou, Y, Zhao, L.J, Xu, X, Ye, A, Travers-Gustafson, D, Zhou, B, Lappe, J.M, DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation, The Journal of steroid biochemistry and molecular biology, 2014, 144, 207-214.
  • Sharma, S.S, Jangale, N.M, Harsulkar, A.M, Gokhale, M.K, Joshi, B.N, Chronic maternal calcium and 25-hydroxyvitamin D deficiency in Wistar rats programs abnormal hepatic gene expression leading to hepatic steatosis in female offspring, The Journal of nutritional biochemistry, 2017, 43, 36-46.
  • Urrutia-Pereira, M, Solé, D, Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood, Revista Paulista de Pediatria (English Edition), 2015, 33(1), 104-113.
  • Hornsby, E, Pfeffer, P.E, Laranjo, N, Cruikshank, W, Tuzova, M, Litonjua, A.A, Hawrylowicz, C, Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial, Journal of Allergy and Clinical Immunology, 2018, 141(1), 269-278.
  • Rytter, D, Bech, B.H, Halldorsson, T.I, Henriksen, T.B, Grandström, C, Cohen, A, Olsen, S. F, Maternal vitamin D status at week 30 of gestation and offspring cardio-metabolic health at 20 years: a prospective cohort study over two decades, PloS one, 2016, 11(10), e0164758.
  • Chakhtoura, M, Nassar, A, Arabi, A, Cooper, C, Harvey, N, Mahfoud, Z, Fuleihan, G.E.H, Effect of vitamin D replacement on maternal and neonatal outcomes: a randomised controlled trial in pregnant women with hypovitaminosis D. A protocol, BMJ open, 2016, 6(3), e010818.
  • Fetahu, I, Höbaus, J, E. Kállay, Vitamin D and the epigenome, Front Physiol, 2014, 5, 164.
  • Xue, J, Schoenrock, S.A, Valdar, W, Tarantino, L.M, Ideraabdullah, F.Y, Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations, Clinical epigenetics, 2016, 8(1), 1-16.
  • Junge, K.M, Bauer, T, Geissler, S, Hirche, F, Thürmann, L, Bauer, M, Lehmann, I, Increased vitamin D levels at birth and in early infancy increase offspring allergy risk--evidence for involvement of epigenetic mechanisms, Journal of Allergy and Clinical Immunology, 2016, 137(2), 610.
  • Suderman, M, Stene, L.C, Bohlin, J, Page, C.M, Holvik, K, Parr, C.L, Nystad, W, 25-Hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC), The Journal of steroid biochemistry and molecular biology, 2016, 159, 102-109.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Sevtap Küçükcankurtaran 0000-0003-4524-8205

Zeynep Caferoğlu 0000-0002-7226-5636

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Küçükcankurtaran, S., & Caferoğlu, Z. (2021). D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(4), 709-714. https://doi.org/10.34087/cbusbed.929505
AMA Küçükcankurtaran S, Caferoğlu Z. D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR. CBU-SBED. Aralık 2021;8(4):709-714. doi:10.34087/cbusbed.929505
Chicago Küçükcankurtaran, Sevtap, ve Zeynep Caferoğlu. “D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, sy. 4 (Aralık 2021): 709-14. https://doi.org/10.34087/cbusbed.929505.
EndNote Küçükcankurtaran S, Caferoğlu Z (01 Aralık 2021) D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8 4 709–714.
IEEE S. Küçükcankurtaran ve Z. Caferoğlu, “D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR”, CBU-SBED, c. 8, sy. 4, ss. 709–714, 2021, doi: 10.34087/cbusbed.929505.
ISNAD Küçükcankurtaran, Sevtap - Caferoğlu, Zeynep. “D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/4 (Aralık 2021), 709-714. https://doi.org/10.34087/cbusbed.929505.
JAMA Küçükcankurtaran S, Caferoğlu Z. D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR. CBU-SBED. 2021;8:709–714.
MLA Küçükcankurtaran, Sevtap ve Zeynep Caferoğlu. “D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR”. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, c. 8, sy. 4, 2021, ss. 709-14, doi:10.34087/cbusbed.929505.
Vancouver Küçükcankurtaran S, Caferoğlu Z. D VİTAMİNİNİN MATERNAL VE FETAL SAĞLIK ÜZERİNE ETKİSİ: FETAL PROGRAMLAMA, GENETİK VE EPİGENETİK MEKANİZMALAR. CBU-SBED. 2021;8(4):709-14.