Derleme
BibTex RIS Kaynak Göster

Biochar for Sustainable Management of Environment

Yıl 2021, Cilt: 1 Sayı: 1, 7 - 17, 19.06.2021

Öz

Biochar, produced from thermochemical conversion of biomass in an oxygen free or limited environment continues to attract the interests of scientists from various disciplines, due to high carbon content, resistance to degradation and porous structure. Depending on type and nature of feedstock and pyrolysis conditions, a wide variety of biochars with different characteristics can be produced. Although all biomasses pyrolyzed at high temperatures are generally referred to as biochar, it is not possible to provide a general definition covering the physical, chemical and biological properties of all biochars. Biochar application in agricultural fields is considered to reduce global warming through the reduction of greenhouse gas emissions to atmosphere and sequestering atmospheric carbon into soil. Biochar is also an efficient additive to remove organic and inorganic pollutants in soil and water due to high surface area and porosity, surface functional groups and surface charge. Therefore, numerous greenhouse and field studies using biochars produced from plant and feedstock wastes have been recently carried out to investigate the impacts of biochars on environment. However, due to the differences in type and composition of biochars, pyrolysis temperature, particle size, characteristics of soils applied and climate of experimental sites, contradicting reports have been published. Porosity, surface area and surface charge of biochars produced at high pyrolysis temperature are greater compared to biochars produced at low temperature. Therefore, high temperature biochars are reported to be more efficient in removing the pollutants. In this review, definitions of biochar, utilization purposes and results of recent studies conducted to investigate the effects of biochar application on greenhouse gases emissions and nutrient leaching have been compiled and discussed.

Kaynakça

  • Amonette JE., Joseph S., (2009). Characteristics of Biochar: Microchemical Properties. In: J. Lehmann, Joseph, S. Ed), Biochar for Environmental Management Science and Technology, Earthscan, London.
  • Baldock JA., Smernik RJ., (2002). Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red Pine) Wood. Organic Geochemistry, 33 (9), 1093-1109.
  • Beusen AHW., Bouwman AF., Heuberger PSC., Van Drecht G., Van Der Hoek KW., (2008). Bottom-Up Uncertainty Estimates of Global Ammonia Emissions from Global Agricultural Production Systems, Atmospheric Environment, 42 (24), 6067-6077.
  • Biederman LA., Harpole WS., (2013). Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis, GCB Bioenergy, 5, 202–214.
  • Boehm HP., (1994). Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons’, Carbon, 32, 759–769.
  • Brassard P., Godbout S., Raghavan V., (2016). Soil Biochar Amendment as a Climate Change Mitigation Tool: Key Parameters and Mechanisms Involved, J. Environ. Manag. 181, 484-497.
  • Brinson S., Cabrera M., Tyson S., (1994). Ammonia Volatilization from Surface-Applied, Fresh and Composted Poultry Litter, Plant Soil, 167, 213–218
  • Bruun EW., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen PA., Dam-Johansen K., (2011). Influence of Fast Pyrolysis Temperature on Biochar Labile Fraction and Short-Term Carbon Loss in a Loamy Soil, Biomass and Bioenergy, 35 (3), 1182-1189.
  • Cao X., Harris W., (2010). Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation, Bioresour. Technol., 101, 5222–5228.
  • Cayuela ML., Van Zwieten L., Singh BP., Jeffery S, Roig A., Sánchez-Monedero MA., (2014). Biochar's Role in Mitigating Soil Nitrous Oxide Emissions: a Review and Meta-Analysis, Agric. Ecosyst. Environ. 191, 5–16.
  • Cheng CH., Lehmann J., Thies JE., Burton SD., (2008). Stability of Black Carbon in Soils Across a Climatic Gradient, Journal of Geophysical Research, 113, G02027.
  • Clough TJ., Sherlock RR., Mautner MN., Milligan DB., Wilson PF., Freeman CG., McEwan MJ., (2003). Emission of Nitrogen Oxides and Ammonia from Varying Rates of Applied Synthetic Urine and Correlations with Soil Chemistry, Soil Research, 41 (3), 421-438.
  • Demirbas A., (2004). Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues, Journal of Analytical and Applied Pyrolysis, 72 (2), 243-248.
  • Doydora SA., Cabrera ML., Das KC., Gaskin JW., Sonon LS., Miller WP., (2011). Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar, International Journal of Environmental Research and Public Health, 8 (5), 1491-1502.
  • Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey DW., Haywood J., Lean J., Lowe DC., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R., (2007). Changes in Atmospheric Constituents and in Radiative Forcing, Chap. 2. In Climate Change, The Physical Science Basis.
  • Joseph S., Camps-Arbestaine M., Lin Y., Munroe P., Chia CH., Hook J., Van Zwieten L., Kimber S., Cowie A., Singh BP., Lehmann J., Foidl N., Smernik RJ., Amonette JE., (2010). An Investigation into the Reactions of Biochar in Soil, Aust. J. Soil Res., 48, 501–515.
  • Ghezzehei TA., Sarkhot DV., Berhe AA., (2014). Biochar Can Be Used to Capture Essential Nutrients from Dairy Wastewater and Improve Soil Physico-Chemical Properties, Solid Earth, 5 (2), 953-962.
  • Grutzmacher P., Puga AP., Bibar MPS., Coscione AR., Packer AP., de Andrade CA., (2018). Carbon Stability and Mitigation of Fertilizer Induced N2O Emissions in Soil Amended with Biochar, Science of the Total Environment, 625, 1459–1466.
  • Harter J., Krause HM., Schuettler S., Ruser R., Fromme M., Scholten T., Behrens S., (2014). Linking N2O Emissions from Biochar-Amended Soil to The Structure and Function of the N-Cycling Microbial Community, The ISME journal, 8 (3), 660.
  • Harter J., Weigold P., El-Hadidi M., Huson DH., Kappler A., Behrens S., (2016). Soil Biochar Amendment Shapes the Composition of N2O-Reducing Microbial Communities, Sci. Total Environ, 562, 379–390.
  • IPCC, (2013). Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.),. Cambridge University Press, Cambridge, UK and NY, USA 1535 pp.
  • Ippolito JA,, Laird DA,, Busscher WJ, (2012). Environmental Benefits of Biochar, J. of Environ. Qual., 41 (4), 967-972.
  • Klass DL., (1998). Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, San Diego, CA.
  • Kürklü A., Bilgin S., Külcü R., Yaldız O., (2004). Bazı Sera Bitkisel Biyokütle Atıklarının Miktar ve Enerji İçeriklerinin Belirlenmesi Üzerine Bir Araştırma, Biyoenerji Semp. 20–22 Ekim, İzmir, s.69-75.
  • Laird DA., (2008). The Charcoal Vision: a Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, While Improving Soil and Water Quality. Agronomy Journal, 100 (1), 178-181.
  • Laird D., Fleming P., Davis D., Horton R., Wang B., Karlen D., (2010). Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil, Geoderma, 158 (3–4), 443–449.
  • Lehmann J., da Silva Jr JP., Steiner C., Nehls T., Zech W., Glaser B., (2003). Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments, Plant and Soil, 249, 343–357.
  • Lehmann J., Liang B., Solomon D., Lerotic M., Luizão F., Kinyangi F., Schäfer T., Wirick S., Jacobsen C., (2005). Near-edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy for Mapping Nano-Scale Distribution of Organic Carbon Forms in Soil: Application to Black Carbon Particles, Global Biogeochemical Cycles, 19, pGB1013.
  • Lehmann J., Gaunt J., Rondon M., (2006). Bio-char Sequestration in Terrestrial Ecosystems—A Review, Mitig. Adapt. Strateg. Glob. Change, 11, 403–427.
  • Lehmann J., Joseph S., (20098. Biochar for Environmental Management: An Introduction, Lehmann J, Joseph, S. (Eds.). Biochar for Environmental Management: Science and Technology, Earthscan, pp. 1-12.
  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad JO., Thies J., Luizão FJ., Petersen J., Neves EG., (2006). Black Carbon Increases Cation Exchange Capacity in Soils, Soil Science Society of America Journal, 70, 1719–1730.
  • Major J., Lehmann J., Rondon M., Goodale C., (2010). Fate of Soil-Applied Black Carbon: Downward Migration, Leaching and Soil Respiration, Glob Chang Biol, 16, 1366–1379.
  • Novak JM., Busscher WJ., Watts DW., Amonette JE., Ippolito JA., Lima IM., Rehrah D., (2012). Biochars Impact on Soil-Moisture Storage in an Ultisol and two Aridisols, Soil Science, 177 (5), 310-320.
  • Özçimen D., Ersoy-Meriçboyu A., (2010). Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials, Renew. En., 35 (6), 1319-1324.
  • Park S., Croteau P., Boering KA., Etheridge DM., Ferretti D., Fraser PJ., Kim KR., Krummel PB., Langenfelds RL., Van Ommen TD, Steele LP., Trudinger CM., (2012). Trends and Seasonal Cycles in the Isotopic Composition of Nitrous Oxide Since 1940, Nat. Geosci, 5, 261–265.
  • Perlack RD., Wright LL., Turhollow AF., Graham RL., Stokes BJ., Erbach DC., (2005). Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, http:// feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf (Erişim tarihi: 08.03.2018).
  • Riaz M., Roohi M., Arif MS., Hussain Q., Yasmeen T., Shahzad T., Khalid M. (2017). Corncob-Derived Biochar Decelerates Mineralization of Native and Added Organic Matter (AOM) in Organic Matter Depleted Alkaline Soil, Geoderma, 294, 19-28.
  • Sarkhot DV., Berhe AA., Ghezzeehei TA., (2012). Impact of Biochar Enriched with Dairy Manure Effluent on Carbon and Nitrogen Dynamics, J. Environ. Qual., 41, 1107–1114.
  • Sarkhot DV., Ghezzehei TA., Berhe AA., (2013). Biochar for Nutrient Recapture from Dairy Wastewater: Recovery of Major Nutrients, J. Environ. Qual., 42, 1545–1554.
  • Singh BP., Hatton BJ., Singh B., Cowie AL., Kathuria A., (2010). Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils, J. of Envir. Qual., 39 (4), 1224-1235.
  • Spokas KA., Reicosky DC., (2009). Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production, Annals of Environmental Science, 3 (1), 4.
  • Spokas KA., Cantrell KB., Novak JM., Archer DW., Ippolito JA., Collins HP., Boateng AA., Lima IM., Lamb MC., McAloon AJ., (2012). Biochar: a Synthesis of Its Agronomic Impact Beyond Carbon Sequestration, J. Environ. Qual., 41, 973– 989.
  • Steinbeiss S., Gleixner G., Antonietti M., (2009). Effect of Biochar Amendment on Soil Carbon Balance and Soil Microbial Activity, Soil Biology and Biochemistry, 41, 1301–1310.
  • Steiner C., Das KC., Melear N., Lakly D., (2010). Reducing Nitrogen Loss During Poultry Litter Composting Using Biochar, Journal of Environ. Qual., 39 (4), 1236-1242.
  • Sünal S., Erşahin S., (2012). Türkiye’de Tarımsal Kaynaklı Yeraltı Suyu Nitrat Kirliliği, Türk Bilimsel Derlemeler Dergisi, (2), 116-118.
  • Taghizadeh-Toosi A., Clough TJ., Sherlock RR., Condron LM., (2012). Biochar Adsorbed Ammonia is Bioavailable, Plant and Soil, 350 (1-2), 57-69.
  • Thomazini T., Spokas K., Hall K., Ippolito J., Lentz R., Novak J., (2015). GHG Impacts of Biochar: Predictability for the Same Biochar, Agric. Ecosyst. Environ, 207, 183–191.
  • Yaman S., (2004). Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks, Energy Convers Manag, 45, 651–71.
  • Yanai Y., Toyota K., Okazaki M., (2007). Effects of Charcoal Addition on N2O Emissions from Soil Resulting from Rewetting Air-Dried Soil in Short-Term Laboratory Experiments, Soil Sci. Plant Nutr., 53, 181–188.
  • Van Zwieten L., Singh B., Joseph S., Kimber S., Cowie A., Chan KY., (2009). Biochar and Emissions of Non-CO2 Greenhouse Gases from Soil. Biochar for Environmental Management: Science and Technology, 1, 227-250.
  • Van Zwieten L., Singh BP., Kimber SWL., Murphy DV., Macdonald LM., Rust J., Morris S., (2014). An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application, Agriculture, Ecosystems & Environment, 191, 53-62.
  • Verheijen F., Jeffery S., Bastos AC., Van der Velde M., Diafas I., (2010). Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, European Commission, Joint Research Centre, 24099, 162.
  • Wilhelm WW., Johnson JMF., Hatfield JL., Voorhees WB., Linden DR. (2004). Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review, Agron. J. 96, 1–17.
  • Winsley P., (2007). Biochar and Bioenergy Production for Climate Change, New Zealand Science Review, 64 (1), 1-10.
  • Zhang D., Pan G., Wu G., Kibue GW., Li L., Zhang X., Zheng J., Zheng J., Cheng K., Joseph S., Liu X., (2016). Biochar Helps Enhance Maize Productivity and Reduce Greenhouse Gas Emissions Under Balanced Fertilization in a Rainfed Low Fertility Inceptisol, Chemosphere, 142, 106-113.

Sürdürülebilir Çevre Yönetiminde Biyoçar

Yıl 2021, Cilt: 1 Sayı: 1, 7 - 17, 19.06.2021

Öz

Bitkisel ve hayvansal kökenli biyokütlelerin yüksek sıcaklıkta oksijenin olmadığı veya kısıtlı olduğu bir ortamda değişime uğratılmasıyla üretilen karbonca zengin, ayrışmaya dayanıklı ve gözenekli yapıya sahip olan biyoçar, çeşitli disiplinlerden bilim insanlarının ilgisini çekmektedir. Hammaddenin doğasına ve üretim koşullarına bağlı olarak özellikleri birbirlerinden farklı çok çeşitli biyoçar üretmek mümkündür. Her ne kadar yüksek sıcaklıkta oksijensiz ortamda piroliz edilen materyallerin tamamına genel olarak biyoçar adı verilse de tüm biyoçarların fiziksel, kimyasal ve biyolojik özelliklerini içine alacak bir tanımlama yapmak mümkün değildir. Biyoçarın tarım arazilerinde kullanımının sera gazlarının atmosfere geçişini azaltması ve atmosferdeki karbonun toprakta zenginleştirilmesini sağlaması nedeni ile küresel ısınmanın azaltılmasına önemli katkı yapacağına inanılmaktadır. Ayrıca, yüksek yüzey alanı ve gözenekliliği, yüzeyindeki fonksiyonel grupları ve yüzey yükü nedeni ile biyoçar, toprak ve su içerisindeki organik ve inorganik kirleticilerin uzaklaştırılmasında da etkili bir katkı maddesidir. Bu nedenle, son yıllarda bitkisel ve hayvansal atıkların biyoçara dönüştürülmesi ve çevre amaçlı kullanımını konu eden çok sayıda sera ve arazi çalışmaları yapılmakta ve sonuçları yayınlanmaktadır. Ancak, biyoçar üretilen ham maddenin çeşidi ve bileşimi, piroliz sıcaklığı, parçacık büyüklüğü ve uygulanan toprak ile araştırmanın yürütüldüğü ortamın iklimi gibi birçok özelliğe bağlı olarak biyoçar uygulamaları konusunda birbirleri ile çelişen raporlar görmek mümkündür. Genel olarak piroliz sıcaklığı yükseldikçe biyoçarın gözenekliliği, yüzey alanı ve yüzey yükü arttığından düşük sıcaklıkta üretilen biyoçarlara kıyasla kirleticileri uzaklaştırmada daha etkili olduğu rapor edilmektedir. Bu çalışmada, biyoçarın tanımları, faydalanılan alanlar ve yakın zamanda yayınlanmış özellikle biyoçar uygulamalarının sera gazı emisyonları ve besin elementi yıkanmasına etkileri gibi çevre amaçlı uygulamaları konu eden araştırma sonuçları derlenmiş ve bulguları tartışılmıştır.

Kaynakça

  • Amonette JE., Joseph S., (2009). Characteristics of Biochar: Microchemical Properties. In: J. Lehmann, Joseph, S. Ed), Biochar for Environmental Management Science and Technology, Earthscan, London.
  • Baldock JA., Smernik RJ., (2002). Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red Pine) Wood. Organic Geochemistry, 33 (9), 1093-1109.
  • Beusen AHW., Bouwman AF., Heuberger PSC., Van Drecht G., Van Der Hoek KW., (2008). Bottom-Up Uncertainty Estimates of Global Ammonia Emissions from Global Agricultural Production Systems, Atmospheric Environment, 42 (24), 6067-6077.
  • Biederman LA., Harpole WS., (2013). Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis, GCB Bioenergy, 5, 202–214.
  • Boehm HP., (1994). Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons’, Carbon, 32, 759–769.
  • Brassard P., Godbout S., Raghavan V., (2016). Soil Biochar Amendment as a Climate Change Mitigation Tool: Key Parameters and Mechanisms Involved, J. Environ. Manag. 181, 484-497.
  • Brinson S., Cabrera M., Tyson S., (1994). Ammonia Volatilization from Surface-Applied, Fresh and Composted Poultry Litter, Plant Soil, 167, 213–218
  • Bruun EW., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen PA., Dam-Johansen K., (2011). Influence of Fast Pyrolysis Temperature on Biochar Labile Fraction and Short-Term Carbon Loss in a Loamy Soil, Biomass and Bioenergy, 35 (3), 1182-1189.
  • Cao X., Harris W., (2010). Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation, Bioresour. Technol., 101, 5222–5228.
  • Cayuela ML., Van Zwieten L., Singh BP., Jeffery S, Roig A., Sánchez-Monedero MA., (2014). Biochar's Role in Mitigating Soil Nitrous Oxide Emissions: a Review and Meta-Analysis, Agric. Ecosyst. Environ. 191, 5–16.
  • Cheng CH., Lehmann J., Thies JE., Burton SD., (2008). Stability of Black Carbon in Soils Across a Climatic Gradient, Journal of Geophysical Research, 113, G02027.
  • Clough TJ., Sherlock RR., Mautner MN., Milligan DB., Wilson PF., Freeman CG., McEwan MJ., (2003). Emission of Nitrogen Oxides and Ammonia from Varying Rates of Applied Synthetic Urine and Correlations with Soil Chemistry, Soil Research, 41 (3), 421-438.
  • Demirbas A., (2004). Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues, Journal of Analytical and Applied Pyrolysis, 72 (2), 243-248.
  • Doydora SA., Cabrera ML., Das KC., Gaskin JW., Sonon LS., Miller WP., (2011). Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar, International Journal of Environmental Research and Public Health, 8 (5), 1491-1502.
  • Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey DW., Haywood J., Lean J., Lowe DC., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R., (2007). Changes in Atmospheric Constituents and in Radiative Forcing, Chap. 2. In Climate Change, The Physical Science Basis.
  • Joseph S., Camps-Arbestaine M., Lin Y., Munroe P., Chia CH., Hook J., Van Zwieten L., Kimber S., Cowie A., Singh BP., Lehmann J., Foidl N., Smernik RJ., Amonette JE., (2010). An Investigation into the Reactions of Biochar in Soil, Aust. J. Soil Res., 48, 501–515.
  • Ghezzehei TA., Sarkhot DV., Berhe AA., (2014). Biochar Can Be Used to Capture Essential Nutrients from Dairy Wastewater and Improve Soil Physico-Chemical Properties, Solid Earth, 5 (2), 953-962.
  • Grutzmacher P., Puga AP., Bibar MPS., Coscione AR., Packer AP., de Andrade CA., (2018). Carbon Stability and Mitigation of Fertilizer Induced N2O Emissions in Soil Amended with Biochar, Science of the Total Environment, 625, 1459–1466.
  • Harter J., Krause HM., Schuettler S., Ruser R., Fromme M., Scholten T., Behrens S., (2014). Linking N2O Emissions from Biochar-Amended Soil to The Structure and Function of the N-Cycling Microbial Community, The ISME journal, 8 (3), 660.
  • Harter J., Weigold P., El-Hadidi M., Huson DH., Kappler A., Behrens S., (2016). Soil Biochar Amendment Shapes the Composition of N2O-Reducing Microbial Communities, Sci. Total Environ, 562, 379–390.
  • IPCC, (2013). Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.),. Cambridge University Press, Cambridge, UK and NY, USA 1535 pp.
  • Ippolito JA,, Laird DA,, Busscher WJ, (2012). Environmental Benefits of Biochar, J. of Environ. Qual., 41 (4), 967-972.
  • Klass DL., (1998). Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, San Diego, CA.
  • Kürklü A., Bilgin S., Külcü R., Yaldız O., (2004). Bazı Sera Bitkisel Biyokütle Atıklarının Miktar ve Enerji İçeriklerinin Belirlenmesi Üzerine Bir Araştırma, Biyoenerji Semp. 20–22 Ekim, İzmir, s.69-75.
  • Laird DA., (2008). The Charcoal Vision: a Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, While Improving Soil and Water Quality. Agronomy Journal, 100 (1), 178-181.
  • Laird D., Fleming P., Davis D., Horton R., Wang B., Karlen D., (2010). Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil, Geoderma, 158 (3–4), 443–449.
  • Lehmann J., da Silva Jr JP., Steiner C., Nehls T., Zech W., Glaser B., (2003). Nutrient Availability and Leaching in an Archaeological Anthrosol and a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments, Plant and Soil, 249, 343–357.
  • Lehmann J., Liang B., Solomon D., Lerotic M., Luizão F., Kinyangi F., Schäfer T., Wirick S., Jacobsen C., (2005). Near-edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy for Mapping Nano-Scale Distribution of Organic Carbon Forms in Soil: Application to Black Carbon Particles, Global Biogeochemical Cycles, 19, pGB1013.
  • Lehmann J., Gaunt J., Rondon M., (2006). Bio-char Sequestration in Terrestrial Ecosystems—A Review, Mitig. Adapt. Strateg. Glob. Change, 11, 403–427.
  • Lehmann J., Joseph S., (20098. Biochar for Environmental Management: An Introduction, Lehmann J, Joseph, S. (Eds.). Biochar for Environmental Management: Science and Technology, Earthscan, pp. 1-12.
  • Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad JO., Thies J., Luizão FJ., Petersen J., Neves EG., (2006). Black Carbon Increases Cation Exchange Capacity in Soils, Soil Science Society of America Journal, 70, 1719–1730.
  • Major J., Lehmann J., Rondon M., Goodale C., (2010). Fate of Soil-Applied Black Carbon: Downward Migration, Leaching and Soil Respiration, Glob Chang Biol, 16, 1366–1379.
  • Novak JM., Busscher WJ., Watts DW., Amonette JE., Ippolito JA., Lima IM., Rehrah D., (2012). Biochars Impact on Soil-Moisture Storage in an Ultisol and two Aridisols, Soil Science, 177 (5), 310-320.
  • Özçimen D., Ersoy-Meriçboyu A., (2010). Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials, Renew. En., 35 (6), 1319-1324.
  • Park S., Croteau P., Boering KA., Etheridge DM., Ferretti D., Fraser PJ., Kim KR., Krummel PB., Langenfelds RL., Van Ommen TD, Steele LP., Trudinger CM., (2012). Trends and Seasonal Cycles in the Isotopic Composition of Nitrous Oxide Since 1940, Nat. Geosci, 5, 261–265.
  • Perlack RD., Wright LL., Turhollow AF., Graham RL., Stokes BJ., Erbach DC., (2005). Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, http:// feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf (Erişim tarihi: 08.03.2018).
  • Riaz M., Roohi M., Arif MS., Hussain Q., Yasmeen T., Shahzad T., Khalid M. (2017). Corncob-Derived Biochar Decelerates Mineralization of Native and Added Organic Matter (AOM) in Organic Matter Depleted Alkaline Soil, Geoderma, 294, 19-28.
  • Sarkhot DV., Berhe AA., Ghezzeehei TA., (2012). Impact of Biochar Enriched with Dairy Manure Effluent on Carbon and Nitrogen Dynamics, J. Environ. Qual., 41, 1107–1114.
  • Sarkhot DV., Ghezzehei TA., Berhe AA., (2013). Biochar for Nutrient Recapture from Dairy Wastewater: Recovery of Major Nutrients, J. Environ. Qual., 42, 1545–1554.
  • Singh BP., Hatton BJ., Singh B., Cowie AL., Kathuria A., (2010). Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils, J. of Envir. Qual., 39 (4), 1224-1235.
  • Spokas KA., Reicosky DC., (2009). Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production, Annals of Environmental Science, 3 (1), 4.
  • Spokas KA., Cantrell KB., Novak JM., Archer DW., Ippolito JA., Collins HP., Boateng AA., Lima IM., Lamb MC., McAloon AJ., (2012). Biochar: a Synthesis of Its Agronomic Impact Beyond Carbon Sequestration, J. Environ. Qual., 41, 973– 989.
  • Steinbeiss S., Gleixner G., Antonietti M., (2009). Effect of Biochar Amendment on Soil Carbon Balance and Soil Microbial Activity, Soil Biology and Biochemistry, 41, 1301–1310.
  • Steiner C., Das KC., Melear N., Lakly D., (2010). Reducing Nitrogen Loss During Poultry Litter Composting Using Biochar, Journal of Environ. Qual., 39 (4), 1236-1242.
  • Sünal S., Erşahin S., (2012). Türkiye’de Tarımsal Kaynaklı Yeraltı Suyu Nitrat Kirliliği, Türk Bilimsel Derlemeler Dergisi, (2), 116-118.
  • Taghizadeh-Toosi A., Clough TJ., Sherlock RR., Condron LM., (2012). Biochar Adsorbed Ammonia is Bioavailable, Plant and Soil, 350 (1-2), 57-69.
  • Thomazini T., Spokas K., Hall K., Ippolito J., Lentz R., Novak J., (2015). GHG Impacts of Biochar: Predictability for the Same Biochar, Agric. Ecosyst. Environ, 207, 183–191.
  • Yaman S., (2004). Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks, Energy Convers Manag, 45, 651–71.
  • Yanai Y., Toyota K., Okazaki M., (2007). Effects of Charcoal Addition on N2O Emissions from Soil Resulting from Rewetting Air-Dried Soil in Short-Term Laboratory Experiments, Soil Sci. Plant Nutr., 53, 181–188.
  • Van Zwieten L., Singh B., Joseph S., Kimber S., Cowie A., Chan KY., (2009). Biochar and Emissions of Non-CO2 Greenhouse Gases from Soil. Biochar for Environmental Management: Science and Technology, 1, 227-250.
  • Van Zwieten L., Singh BP., Kimber SWL., Murphy DV., Macdonald LM., Rust J., Morris S., (2014). An Incubation Study Investigating the Mechanisms That Impact N2O Flux from Soil Following Biochar Application, Agriculture, Ecosystems & Environment, 191, 53-62.
  • Verheijen F., Jeffery S., Bastos AC., Van der Velde M., Diafas I., (2010). Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions, European Commission, Joint Research Centre, 24099, 162.
  • Wilhelm WW., Johnson JMF., Hatfield JL., Voorhees WB., Linden DR. (2004). Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review, Agron. J. 96, 1–17.
  • Winsley P., (2007). Biochar and Bioenergy Production for Climate Change, New Zealand Science Review, 64 (1), 1-10.
  • Zhang D., Pan G., Wu G., Kibue GW., Li L., Zhang X., Zheng J., Zheng J., Cheng K., Joseph S., Liu X., (2016). Biochar Helps Enhance Maize Productivity and Reduce Greenhouse Gas Emissions Under Balanced Fertilization in a Rainfed Low Fertility Inceptisol, Chemosphere, 142, 106-113.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Elif Günal 0000-0003-0624-2919

Halil Erdem Bu kişi benim 0000-0002-3296-1549

Yayımlanma Tarihi 19 Haziran 2021
Gönderilme Tarihi 2 Nisan 2018
Yayımlandığı Sayı Yıl 2021 Cilt: 1 Sayı: 1

Kaynak Göster

APA Günal, E., & Erdem, H. (2021). Sürdürülebilir Çevre Yönetiminde Biyoçar. Sürdürülebilir Çevre Dergisi, 1(1), 7-17.
AMA Günal E, Erdem H. Sürdürülebilir Çevre Yönetiminde Biyoçar. Çevre. Haziran 2021;1(1):7-17.
Chicago Günal, Elif, ve Halil Erdem. “Sürdürülebilir Çevre Yönetiminde Biyoçar”. Sürdürülebilir Çevre Dergisi 1, sy. 1 (Haziran 2021): 7-17.
EndNote Günal E, Erdem H (01 Haziran 2021) Sürdürülebilir Çevre Yönetiminde Biyoçar. Sürdürülebilir Çevre Dergisi 1 1 7–17.
IEEE E. Günal ve H. Erdem, “Sürdürülebilir Çevre Yönetiminde Biyoçar”, Çevre, c. 1, sy. 1, ss. 7–17, 2021.
ISNAD Günal, Elif - Erdem, Halil. “Sürdürülebilir Çevre Yönetiminde Biyoçar”. Sürdürülebilir Çevre Dergisi 1/1 (Haziran 2021), 7-17.
JAMA Günal E, Erdem H. Sürdürülebilir Çevre Yönetiminde Biyoçar. Çevre. 2021;1:7–17.
MLA Günal, Elif ve Halil Erdem. “Sürdürülebilir Çevre Yönetiminde Biyoçar”. Sürdürülebilir Çevre Dergisi, c. 1, sy. 1, 2021, ss. 7-17.
Vancouver Günal E, Erdem H. Sürdürülebilir Çevre Yönetiminde Biyoçar. Çevre. 2021;1(1):7-17.