BibTex RIS Kaynak Göster

ABC transporters: circadian rhythms and sex-related differences

Yıl 2013, Cilt: 3 Sayı: 1, 1 - 13, 29.01.2014

Öz

ABC (ATP-binding cassette) transporter superfamily contains membrane proteins transporting substrates across the plasma membrane including drugs, xenobiotics and endogenous compounds. ABC proteins are ATP-dependent primary active transporters that pump substrates across the membranes. In addition to the expression of ABC transporters in intestinal segments, liver and kidney which are responsible for absorption, metabolism and elimination, these are also expressed in other important tissues such as brain and heart. P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs) and breast cancer resistance protein (BCRP) , the important members of ABC superfamily, play significant role in pharmacokinetics and detoxification of drugs and drug metabolites facilitating intestinal secretion, and excretion of drugs into the bile and urine in liver and kidney respectively. In addition to expression of ABC proteins in healthy tissues, they are also expressed in tumor cells, and cause multidrug resistance (MDR) by extruding antineoplastic drugs out of tumor cells and reducing the accumulation of drugs in tumor tissues, thus result in failure of chemotherapy. Expression of ABC transporters in healthy tissues shows circadian rhythm, and activities of these transporters increase and decrease depending on the time of day. Thus, the efficacy and toxicity of drugs transported by ABC transporters change depending on application time of drugs. Additionally, sex-related differences in ABC transporters, not only for drug metabolizing enzymes, are seen as an important factor in the variation of drug effectiveness and drug-induced response. Intra-day and gender-related changes in the functional activity of transporters are important parameters that may change the pharmacological effects and toxicity of drugs.



Key words: ABC transporters, P-gp, BCRP, MRP2, circadian rhythm, sex-related differences, drug resistance, MDR

Kaynakça

  • TransportDB [Internet]. Australia: Macquarie University [updated 12/24/2010; cited 07/02/2013] Available from 07/02/2013: http:// www.membranetransport.org
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-3
  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006; 4: 25-36.
  • Claudel T, Cretenet G, Saumet A, Gachon F. Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett. 2007; 581: 3626-3633.
  • Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010; 50: 377-4
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003; 55: 3-29.
  • Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003; 42: 59-98.
  • Ravna AW, Sager G. Molecular modeling studies of ABC transporters involved in multidrug resistance. Mini Rev Med Chem. 2009; 9: 1861
  • Padowski JM, Pollack GM. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Methods Mol Biol. 2010; 596: 359-384.
  • Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001; 40: 159-168.
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010; 62: 1-96.
  • Del Amo EM, Heikkinen AT, Mönkkönen J. In vitro-in vivo correlation in P-glycoprotein mediated transport in intestinal absorption. Eur J Pharm Sci. 2009; 36: 200-211.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976; 455: 152-162.
  • Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev. 2002; 54: 1295-1310.
  • Balayssac D, Authier N, Cayre A, Coudore F. Does inhibition of P-glycoprotein lead to drug-drug interactions? Toxicol Lett. 2005; 156: 319-329.
  • Huls M, Russel FG, Masereeuw R. The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther. 2009; 328: 3-9.
  • Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci. 2004; 25: 423-429.
  • Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review: Clinical relevance of drug-drug and herb-drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist. 2007; 12: 927-941.
  • Kunta JR, Sinko PJ. Intestinal drug transporters: in vivo function and clinical importance. Curr Drug Metab. 2004; 5: 109-124.
  • Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today 2007; 12: 838-843.
  • Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc) 2008; 73: 592-604.
  • Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006; 109: 137-161.
  • Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38: 802-832.
  • Lee CH. Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol. 2010; 596: 325-340.
  • Vaalburg W, Hendrikse NH, Elsinga PH, Bart J, van Waarde A. P-glycoprotein activity and biological response. Toxicol Appl Pharmacol. 2005; 207: 257-260.
  • Yuan H, Li X, Wu J, Li J, Qu X, Xu W, Tang W. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Curr Med Chem. 2008; 15: 470-476.
  • Morjani H, Madoulet C. Immunosuppressors as multidrug resistance reversal agents. Methods Mol Biol. 2010; 596: 433-446.
  • Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38: 833-862.
  • Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990; 265: 19279-19286.
  • Borst P, Zelcer N, van de Wetering K. MRP2 and 3 in health and disease. Cancer Lett. 2006; 234: 51-61.
  • Fardel O, Jigorel E, Le Vee M, Payen L. Physiological, pharmacological and clinical features of the multidrug resistance protein 2. Biomed Pharmacother. 2005; 59: 104-114.
  • Büchler M, König J, Brom M, Kartenbeck J, Spring H, Horie T, Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996; 271: 15091-15098.
  • Keppler D, Leier I, Jedlitschky G, Mayer R, Büchler M. The function of the multidrug resistance proteins (MRP and cMRP) in drug conjugate transport and hepatobiliary excretion. Adv Enzyme Regul. 1996; 36: 17Paulusma CC, Oude Elferink RP. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. J Mol Med. 1997; 75: 420-428.
  • Schaub TP, Kartenbeck J, König J, Vogel O, Witzgall R, Kriz W, Keppler D. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol. 1997; 8: 1213-1221.
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007; 453: 643-659.
  • Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W, van der Graaf WT. The distribution of drugefflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal bloodtestis barrier and in primary testicular tumors. Eur J Cancer 2004; 40: 2064-2070.
  • Sandusky GE, Mintze KS, Pratt SE, Dantzig AH. Expression of multidrug resistance-associated protein 2 (MRP2) in normal human tissues and carcinomas using tissue microarrays. Histopathology 2002; 41: 65-74.
  • Nies AT, Jedlitschky G, König J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004; 129: 349-360.
  • Aronica E, Gorter JA, Ramkem M, Redeker S, Ozbas-Gerçeker F, van Vliet EA, Scheffer GL, Scheper RJ, van der Valk P, Baayen JC, Troost D. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 2004; 45: 441-451.
  • Hoffmann K, Gastens AM, Volk HA, Löscher W. Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res. 2006; 69: 1-14.
  • Kusuhara H, Sugiyama Y. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 2002; 78: 43-54.
  • Keppler D, Köniq J. Hepatic secretion of cojugated drugs and endogenous substances. Semin Liver Dis. 2000; 20: 265-272.
  • Kamisako T, Leier I, Cui Y, König J, Buchholz U, Hummel-Eisenbeiss J, Keppler D. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999; 30: 485-490.
  • Jedlitschky G, Leier I, Buchholz U, Hummel-Eisenbeiss J, Burchell B, Keppler D. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J. 1997; 327: 305-310.
  • Chu XY, Huskey SE, Braun MP, Sarkadi B, Evans DC, Evers R. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J Pharmacol Exp Ther. 2004; 309: 156-164.
  • Akita H, Suzuki H, Ito K, Kinoshita S, Sato N, Takikawa H, Sugiyama Y. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001; 1511: 7-16.
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003; 83: 633-671.
  • Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, Scheper RJ, Borst P, Pinedo HM, Jansen G. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP Cancer Res. 1999; 59: 2532-2535.
  • Toffoli G, Cecchin E, Corona G, Boiocchi M. Pharmacogenetics of irinotecan. Curr Med Chem Anticancer Agents 2003; 3: 225-237.
  • Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic aniontransporting polypeptide (OATP2/SLC21A6) and Multidrug resistanceassociated protein 2 (MRP2/ABCC2). J Biol Chem. 2002; 277: 6497-6503.
  • Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000; 83: 375-383.
  • Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, Schinkel AH. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16: 2295-2301.
  • Dietrich CG, de Waart DR, Ottenhoff R, Bootsma AH, van Gennip AH, Elferink RP. Mrp2-deficiency in the rat impairs biliary and intestinal excretion and influences metabolism and disposition of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo. Carcinogenesis 2001; 22: 805-811.
  • Berger V, Gabriel AF, Sergent T, Trouet A, Larondelle Y, Schneider YJ. Interaction of ochratoxin A with human intestinal Caco-2 cells: possible implication of a multidrug resistance-associated protein (MRP2). Toxicol Lett. 2003; 140-141: 465-476.
  • Payen L, Courtois A, Campion JP, Guillouzo A, Fardel O. Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem Pharmacol. 2000; 60: 1967-1975.
  • Asakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Takagi K, Hasegawa T. Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol. 2004; 484: 333-339.
  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998; 95: 15665-15670.
  • Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998; 58: 5337-5339.
  • Zhang S, Wang X, Sagawa K, Morris ME. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos. 2005; 33: 341-348.
  • Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006; 27: 17-24.
  • Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002; 71: 537-592.
  • Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22: 7340-7358. van Herwaarden AE, Schinkel AH. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci. 2006; 27: 10-16.
  • Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005; 37: 720-725.
  • Scheffer GL, Maliepaard M, Pijnenborg AC, van Gastelen MA, de Jong MC, Schroeijers AB, van der Kolk DM, Allen JD, Ross DD, van der Valk P, Dalton WS, Schellens JH, Scheper RJ. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res. 2000; 60: 2589-2593.
  • Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001; 61: 3458-3464.
  • Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst. 2000; 92: 1651-1656.
  • Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in abcg2 knockout mice. Adv Drug Deliv Rev. 2009; 61: 14-25.
  • Mao Q. BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res. 2008; 25: 1244-1255. Erratum in: Pharm Res. 2008; 25(6): 1484.
  • Meyer HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/ MXR/ABCP/ABCG2). Handb Exp Pharmacol. 2011; 201: 325-371.
  • Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006; 46: 381-410.
  • Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T, Greenberger LM. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res. 1998; 58: 5850-5858.
  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002; 1: 417-425.
  • Woehlecke H, Osada H, Herrmann A, Lage H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer. 2003; 107: 721-728.
  • Cooray HC, Janvilisri T, van Veen HW, Hladky SB, Barrand MA. Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun. 2004; 317: 269-275.
  • Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007; 26: 39-57.
  • Gupta A, Dai Y, Vethanayagam RR, Hebert MF, Thummel KE, Unadkat JD, Ross DD, Mao Q. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother Pharmacol. 2006; 58: 374-383.
  • Mormont MC, Lévi F. Cancer chronotherapy: principles, applications, and perspectives. Cancer 2003; 97: 155-169.
  • Lévi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007; 47: 593-628.
  • Lévi F, Okyar A.Circadian clocks and drug deliver systems: impact and opportunities in chronotherapeutics. Expert Opin Drug Deliv. 2011: 8: 1535-1541.
  • Filipski E, Innominato PF, Wu M, Li XM, Iacobelli S, Xian LJ, Lévi F. Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst. 2005; 97: 507-517.
  • Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009; 8: 298-302.
  • Li XM, Delaunay F, Dulong S, Claustrat B, Zampera S, Fujii Y, Teboul M, Beau J, Lévi F. Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res. 2010; 70: 3351-3360.
  • Okyar A, Lévi F. Circadian clock control of cell cycle pathways: relevance for cancer chronotherapeutics. In: Yoshida K, ed. Trends in Cell Cycle Research, Kerala-Hindistan. Research Signpost; 2008. p. 293-314.
  • Paschos G, Baggs J, Hogenesch J and FitzGerald GA. Annu Rev Pharmacol Toxicol. 2010; 50: 377-421.
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941.
  • Ando H, Yanagihara H, Sugimoto K, Hayashi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Daily rhythms of P-glycoprotein expression in mice. Chronobiol Int. 2005; 22: 655–665.
  • Okyar A, Filipski E, Dulong S, Ahowesso C, Li XM, Levi F. Rhythmic intestinal drug elimination via ABC transporters: a potential determinant of anticancer drugs chronopharmacology. In 11th Congress of European Biological Rhythm Society, Strasbourg, Fransa. Ağustos 22–29, 2009. Program and Abstract Book, 153.
  • Okyar A, Piccolo E, Ahowesso C, Filipski E, Hossard V, Guettier C, La Sorda R, Tinari N, Iacobelli S, Lévi F. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum. PLoS One 2011; 6: (DOI: 1371/journal.pone.0020393).
  • Stearns AT, Balakrishnan A, Rhoads DB, Ashley SW, Tavakkolizadeh A. Diurnal rhythmicity in the transcription of jejunal drug transporters. J Pharmacol Sci. 2008; 108: 144-148.
  • Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008; 135: 1636-1644.
  • Okyar A, Dressler C, Hanafy A, Baktir G, Lemmer B, Spahn-Langguth H. Circadian variations in exsorptive transport: in situ intestinal perfusion data and in vivo relevance. Chronobiol Int. 2012; 29: 443-453.
  • Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, Lévi F. A Combined experimental and mathematical approach. PLoS Comput Biol. 2011; 7: e1002143. doi:10.1371/journal.pcbi.1002143.
  • Kalabis GM, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein (ABCB1) expression in the guinea pig placenta: developmental changes and regulation by betamethasone. Can J Physiol Pharmacol. 2009; 87: 973-978.
  • Cui YJ, Cheng X, Weaver YM, Klaassen CD. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos. 2009; 37: 203-210.
  • Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther. 1995; 275: 1011-1018.
  • Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001; 70: 189-199.
  • Paine MF, Ludington SS, Chen ML, Stewart PW, Huang SM, Watkins PB. Do men and women differ in proximal small intestinal CYP3A or P-glycoprotein expression? Drug Metab Dispos. 2005; 33: 426-433.
  • Mariana B, Adrián L, Guillermo V, Juan S, Laura M, Carlos L. Genderrelated differences on P-glycoprotein-mediated drug intestinal transport in rats. J Pharm Pharmacol. 2011; 63: 619–626.
  • Kong B, Csanaky IL, Aleksunes LM, Patni M, Chen Q, Ma X, Jaeschke H, Weir S, Broward M, Klaassen CD, Guo GL. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity. Toxicol Appl Pharmacol. 2012; 261: 189-195.
  • Rost D, Kopplow K, Gehrke S, Mueller S, Friess H, Ittrich C, Mayer D, Stiehl A. Gender-specific expression of liver organic anion transporters in rat. Eur J Clin Invest. 2005; 35: 635-643.
  • Hayashi T, Abe F. Kato M, Saito H, Ueyama J, Kondo Y, Imai K, Katoh M, Nadai M, Hasegawa T. Involvement of sulfate conjugation and multidrug resistance-associated protein 2 (Mrp2) in sex-related differences in the pharmacokinetics of garenoxacin in rats. J Infect Chemother. 2011; 17: 24-29.
  • Cherrington NJ, Slitt AL, Maher JM, Zhang XX, Zhang J, Huang W, Wan YJ, Moore DD, Klaassen CD. Induction of multidrug resistance protein 3 (mrp3) in vivo is independent of constitutive androstane receptor. Drug Metab Dispos. 2003; 31: 1315-1319.
  • Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos. 2005; 33, 947-955.
  • Chen C, Klaassen CD. Rat multidrug resistance protein 4 (Mrp4, Abcc4): molecular cloning, organ distribution, postnatal renal expression, and chemical inducibility. Biochem Biophys Res Commun. 2004; 317: 46-53.
  • Tanaka Y, Slitt AL, Leazer TM, Maher JM, Klaassen CD. Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem Biophys Res Commun. 2005; 326: 181-187.
  • Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005; 67: 1765-1771.
  • Dieter MZ, Maher JM, Cheng X, Klaassen CD. Expression and regulation of the sterol half-transporter genes ABCG5 and ABCG8 in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2004; 139: 209–218.
  • Cheng X, Klaassen CD. Tissue distribution, ontogeny, and hormonal regulation of xenobiotic transporters in mouse kidneys. Drug Metab Dispos. 2009; 37: 2178–2185.
  • Stewart PA, Beliveau R, Rogers KA. Cellular localization of P-glycoprotein in brain versus gonadal capillaries. J Histochem Cytochem. 1996; 44: 679-685.
  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992; 267: 24248-24252.
  • Kim WY, Benet LZ. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004; 21: 1284-1293.
  • Mutoh K, Tsukahara S, Mitsuhashi J, Katayama K, Sugimoto Y. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci. 2006; 97: 1198-1204.
  • Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC. P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate 2004; 59: 77-90.
  • Piekarz RL, Cohen D, Horwitz SB. Progesterone regulates the murine multidrug resistance mdr1b gene. J Biol Chem. 1993; 268: 761376
  • Arceci RJ, Croop JM, Horwitz SB, Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A. 1988; 85: 4350-4354.
  • Suzuki T, Zhao YL, Nadai M, Naruhashi K, Shimizu A, Takagi K, Hasegawa T. Gender-related differences in expression and function of hepatic P-glycoprotein and multidrug resistance-associated protein (Mrp2) in rats. Life Sci. 2006; 79: 455-461.
  • Cummins CL, Wu CY, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharmacol Ther. 2002; 72: 474-489.
  • Bebawy M, Chetty M. Gender differences in p-glycoprotein expression and function: effects on drug disposition and outcome. Curr Drug Metab. 2009; 10: 322-328. 1 MacLean C, Moenning U, Reichel A, Fricker G. Closing the gaps: a full scan of the intestinal expression of P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos. 2008; 36: 1249-1254. 1 Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M, Schwab M, Zanger UM. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 2003; 38: 978-988.

ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar

Yıl 2013, Cilt: 3 Sayı: 1, 1 - 13, 29.01.2014

Öz

ABC (ATP-binding cassette) taşıyıcı ailesi çeşitli ilaçların, ksenobiyotiklerin ve endojen bileşiklerin, membranlardan taşınmasını sağlayan proteinlerden oluşmaktadır. ABC proteinleri substratlarını membranlardan pompalayan, ATP’ye bağımlı olarak çalışan primer aktif taşıyıcılardır. Bunların bağırsak segmentleri, karaciğer, böbrek gibi ilaç emilimi, metabolizması ve atılımından sorumlu organların yanı sıra, beyin ve kalp gibi diğer önemli dokulardaki varlığı da bilinmektedir. ABC taşıyıcı ailesinin önemli üyeleri olan P-glikoprotein (P-gp), çoklu ilaç rezistans bağlantılı proteinler (MRP’ler) ve meme kanseri rezistans proteini (BCRP), ilaçların bağırsaklardan atılımında rol oynamakta; karaciğer ve böbreklerde ise ilaçların sırasıyla safra ve idrar ile atılımlarını kolaylaştırmaktadır. Bu nedenle, ABC taşıyıcılarının ilaç ve ilaç metabolitlerinin farmakokinetiğinde ve detoksifikasyonunda önemli görev üstlendiği bilinmektedir. ABC proteinleri, sağlıklı dokuların yanı sıra birçok tümör dokusunda eksprese olmaktadır. Bu taşıyıcılar, antineoplastik ilaçları tümör hücrelerinden dışarı atarak, ilacın tümör dokusunda toplanmasını engellemekte ve böylece uygulanan kemoterapinin başarısız olmasına yol açmaktadır. Çoklu ilaç direnci (MDR; multidrug resistance) olarak bilinen bu durum kanser tedavisinde önemli bir sorun olarak önemini korumaktadır. Sağlıklı dokularda ABC taşıyıcılarının ekspresyonları sirkadiyan ritim göstermekte ve günün zamanına göre etkinlikleri artmakta veya azalmaktadır. Bu durum ABC taşıyıcıları ile taşınan ilaçların etkinlikleri ve toksisitelerinde uygulama zamanına bağlı olarak farklılıklara neden olmakta ve özellikle ABC taşıyıcıları için substrat olan antineoplastik ilaçlar için önem arz etmektedir. Ek olarak, ilaç etkinliğinin ve ilaca bağlı cevabın değişkenlik göstermesinde önemli bir faktör olarak görülen cinsiyete bağlı değişiklikler, sadece ilaç metabolizmasından sorumlu enzimler için değil, taşıyıcı proteinler için de gösterilmiştir. Taşıyıcıların fonksiyonel aktivitelerinde gün içi ve cinsiyete bağlı değişikliklerin oluşması ilacın farmakolojik etkilerini ve toksisitesini değiştirebilen önemli parametreler olarak görülmektedir.



Anahtar Kelimeler : ABC taşıyıcı proteinleri, P-gp, BCRP, MRP2, sirkadiyan ritim, cinsiyete bağlı farklılıklar, ilaç rezistansı, MDR

Kaynakça

  • TransportDB [Internet]. Australia: Macquarie University [updated 12/24/2010; cited 07/02/2013] Available from 07/02/2013: http:// www.membranetransport.org
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-3
  • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006; 4: 25-36.
  • Claudel T, Cretenet G, Saumet A, Gachon F. Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett. 2007; 581: 3626-3633.
  • Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010; 50: 377-4
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003; 55: 3-29.
  • Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet. 2003; 42: 59-98.
  • Ravna AW, Sager G. Molecular modeling studies of ABC transporters involved in multidrug resistance. Mini Rev Med Chem. 2009; 9: 1861
  • Padowski JM, Pollack GM. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Methods Mol Biol. 2010; 596: 359-384.
  • Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001; 40: 159-168.
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010; 62: 1-96.
  • Del Amo EM, Heikkinen AT, Mönkkönen J. In vitro-in vivo correlation in P-glycoprotein mediated transport in intestinal absorption. Eur J Pharm Sci. 2009; 36: 200-211.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976; 455: 152-162.
  • Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev. 2002; 54: 1295-1310.
  • Balayssac D, Authier N, Cayre A, Coudore F. Does inhibition of P-glycoprotein lead to drug-drug interactions? Toxicol Lett. 2005; 156: 319-329.
  • Huls M, Russel FG, Masereeuw R. The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther. 2009; 328: 3-9.
  • Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci. 2004; 25: 423-429.
  • Marchetti S, Mazzanti R, Beijnen JH, Schellens JH. Concise review: Clinical relevance of drug-drug and herb-drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist. 2007; 12: 927-941.
  • Kunta JR, Sinko PJ. Intestinal drug transporters: in vivo function and clinical importance. Curr Drug Metab. 2004; 5: 109-124.
  • Aszalos A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) II. Clinical aspects. Drug Discov Today 2007; 12: 838-843.
  • Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc) 2008; 73: 592-604.
  • Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther. 2006; 109: 137-161.
  • Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38: 802-832.
  • Lee CH. Reversing agents for ATP-binding cassette drug transporters. Methods Mol Biol. 2010; 596: 325-340.
  • Vaalburg W, Hendrikse NH, Elsinga PH, Bart J, van Waarde A. P-glycoprotein activity and biological response. Toxicol Appl Pharmacol. 2005; 207: 257-260.
  • Yuan H, Li X, Wu J, Li J, Qu X, Xu W, Tang W. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Curr Med Chem. 2008; 15: 470-476.
  • Morjani H, Madoulet C. Immunosuppressors as multidrug resistance reversal agents. Methods Mol Biol. 2010; 596: 433-446.
  • Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38: 833-862.
  • Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990; 265: 19279-19286.
  • Borst P, Zelcer N, van de Wetering K. MRP2 and 3 in health and disease. Cancer Lett. 2006; 234: 51-61.
  • Fardel O, Jigorel E, Le Vee M, Payen L. Physiological, pharmacological and clinical features of the multidrug resistance protein 2. Biomed Pharmacother. 2005; 59: 104-114.
  • Büchler M, König J, Brom M, Kartenbeck J, Spring H, Horie T, Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem. 1996; 271: 15091-15098.
  • Keppler D, Leier I, Jedlitschky G, Mayer R, Büchler M. The function of the multidrug resistance proteins (MRP and cMRP) in drug conjugate transport and hepatobiliary excretion. Adv Enzyme Regul. 1996; 36: 17Paulusma CC, Oude Elferink RP. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. J Mol Med. 1997; 75: 420-428.
  • Schaub TP, Kartenbeck J, König J, Vogel O, Witzgall R, Kriz W, Keppler D. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol. 1997; 8: 1213-1221.
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007; 453: 643-659.
  • Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W, van der Graaf WT. The distribution of drugefflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal bloodtestis barrier and in primary testicular tumors. Eur J Cancer 2004; 40: 2064-2070.
  • Sandusky GE, Mintze KS, Pratt SE, Dantzig AH. Expression of multidrug resistance-associated protein 2 (MRP2) in normal human tissues and carcinomas using tissue microarrays. Histopathology 2002; 41: 65-74.
  • Nies AT, Jedlitschky G, König J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004; 129: 349-360.
  • Aronica E, Gorter JA, Ramkem M, Redeker S, Ozbas-Gerçeker F, van Vliet EA, Scheffer GL, Scheper RJ, van der Valk P, Baayen JC, Troost D. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 2004; 45: 441-451.
  • Hoffmann K, Gastens AM, Volk HA, Löscher W. Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res. 2006; 69: 1-14.
  • Kusuhara H, Sugiyama Y. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 2002; 78: 43-54.
  • Keppler D, Köniq J. Hepatic secretion of cojugated drugs and endogenous substances. Semin Liver Dis. 2000; 20: 265-272.
  • Kamisako T, Leier I, Cui Y, König J, Buchholz U, Hummel-Eisenbeiss J, Keppler D. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999; 30: 485-490.
  • Jedlitschky G, Leier I, Buchholz U, Hummel-Eisenbeiss J, Burchell B, Keppler D. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J. 1997; 327: 305-310.
  • Chu XY, Huskey SE, Braun MP, Sarkadi B, Evans DC, Evers R. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J Pharmacol Exp Ther. 2004; 309: 156-164.
  • Akita H, Suzuki H, Ito K, Kinoshita S, Sato N, Takikawa H, Sugiyama Y. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001; 1511: 7-16.
  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003; 83: 633-671.
  • Hooijberg JH, Broxterman HJ, Kool M, Assaraf YG, Peters GJ, Noordhuis P, Scheper RJ, Borst P, Pinedo HM, Jansen G. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP Cancer Res. 1999; 59: 2532-2535.
  • Toffoli G, Cecchin E, Corona G, Boiocchi M. Pharmacogenetics of irinotecan. Curr Med Chem Anticancer Agents 2003; 3: 225-237.
  • Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic aniontransporting polypeptide (OATP2/SLC21A6) and Multidrug resistanceassociated protein 2 (MRP2/ABCC2). J Biol Chem. 2002; 277: 6497-6503.
  • Evers R, de Haas M, Sparidans R, Beijnen J, Wielinga PR, Lankelma J, Borst P. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000; 83: 375-383.
  • Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH, Schinkel AH. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16: 2295-2301.
  • Dietrich CG, de Waart DR, Ottenhoff R, Bootsma AH, van Gennip AH, Elferink RP. Mrp2-deficiency in the rat impairs biliary and intestinal excretion and influences metabolism and disposition of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo. Carcinogenesis 2001; 22: 805-811.
  • Berger V, Gabriel AF, Sergent T, Trouet A, Larondelle Y, Schneider YJ. Interaction of ochratoxin A with human intestinal Caco-2 cells: possible implication of a multidrug resistance-associated protein (MRP2). Toxicol Lett. 2003; 140-141: 465-476.
  • Payen L, Courtois A, Campion JP, Guillouzo A, Fardel O. Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes. Biochem Pharmacol. 2000; 60: 1967-1975.
  • Asakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Takagi K, Hasegawa T. Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol. 2004; 484: 333-339.
  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998; 95: 15665-15670.
  • Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998; 58: 5337-5339.
  • Zhang S, Wang X, Sagawa K, Morris ME. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos. 2005; 33: 341-348.
  • Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006; 27: 17-24.
  • Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002; 71: 537-592.
  • Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22: 7340-7358. van Herwaarden AE, Schinkel AH. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci. 2006; 27: 10-16.
  • Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005; 37: 720-725.
  • Scheffer GL, Maliepaard M, Pijnenborg AC, van Gastelen MA, de Jong MC, Schroeijers AB, van der Kolk DM, Allen JD, Ross DD, van der Valk P, Dalton WS, Schellens JH, Scheper RJ. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res. 2000; 60: 2589-2593.
  • Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001; 61: 3458-3464.
  • Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst. 2000; 92: 1651-1656.
  • Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in abcg2 knockout mice. Adv Drug Deliv Rev. 2009; 61: 14-25.
  • Mao Q. BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res. 2008; 25: 1244-1255. Erratum in: Pharm Res. 2008; 25(6): 1484.
  • Meyer HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/ MXR/ABCP/ABCG2). Handb Exp Pharmacol. 2011; 201: 325-371.
  • Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006; 46: 381-410.
  • Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T, Greenberger LM. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res. 1998; 58: 5850-5858.
  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002; 1: 417-425.
  • Woehlecke H, Osada H, Herrmann A, Lage H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer. 2003; 107: 721-728.
  • Cooray HC, Janvilisri T, van Veen HW, Hladky SB, Barrand MA. Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun. 2004; 317: 269-275.
  • Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev. 2007; 26: 39-57.
  • Gupta A, Dai Y, Vethanayagam RR, Hebert MF, Thummel KE, Unadkat JD, Ross DD, Mao Q. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother Pharmacol. 2006; 58: 374-383.
  • Mormont MC, Lévi F. Cancer chronotherapy: principles, applications, and perspectives. Cancer 2003; 97: 155-169.
  • Lévi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007; 47: 593-628.
  • Lévi F, Okyar A.Circadian clocks and drug deliver systems: impact and opportunities in chronotherapeutics. Expert Opin Drug Deliv. 2011: 8: 1535-1541.
  • Filipski E, Innominato PF, Wu M, Li XM, Iacobelli S, Xian LJ, Lévi F. Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst. 2005; 97: 507-517.
  • Filipski E, Lévi F. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 2009; 8: 298-302.
  • Li XM, Delaunay F, Dulong S, Claustrat B, Zampera S, Fujii Y, Teboul M, Beau J, Lévi F. Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res. 2010; 70: 3351-3360.
  • Okyar A, Lévi F. Circadian clock control of cell cycle pathways: relevance for cancer chronotherapeutics. In: Yoshida K, ed. Trends in Cell Cycle Research, Kerala-Hindistan. Research Signpost; 2008. p. 293-314.
  • Paschos G, Baggs J, Hogenesch J and FitzGerald GA. Annu Rev Pharmacol Toxicol. 2010; 50: 377-421.
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941.
  • Ando H, Yanagihara H, Sugimoto K, Hayashi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Daily rhythms of P-glycoprotein expression in mice. Chronobiol Int. 2005; 22: 655–665.
  • Okyar A, Filipski E, Dulong S, Ahowesso C, Li XM, Levi F. Rhythmic intestinal drug elimination via ABC transporters: a potential determinant of anticancer drugs chronopharmacology. In 11th Congress of European Biological Rhythm Society, Strasbourg, Fransa. Ağustos 22–29, 2009. Program and Abstract Book, 153.
  • Okyar A, Piccolo E, Ahowesso C, Filipski E, Hossard V, Guettier C, La Sorda R, Tinari N, Iacobelli S, Lévi F. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum. PLoS One 2011; 6: (DOI: 1371/journal.pone.0020393).
  • Stearns AT, Balakrishnan A, Rhoads DB, Ashley SW, Tavakkolizadeh A. Diurnal rhythmicity in the transcription of jejunal drug transporters. J Pharmacol Sci. 2008; 108: 144-148.
  • Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008; 135: 1636-1644.
  • Okyar A, Dressler C, Hanafy A, Baktir G, Lemmer B, Spahn-Langguth H. Circadian variations in exsorptive transport: in situ intestinal perfusion data and in vivo relevance. Chronobiol Int. 2012; 29: 443-453.
  • Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, Lévi F. A Combined experimental and mathematical approach. PLoS Comput Biol. 2011; 7: e1002143. doi:10.1371/journal.pcbi.1002143.
  • Kalabis GM, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein (ABCB1) expression in the guinea pig placenta: developmental changes and regulation by betamethasone. Can J Physiol Pharmacol. 2009; 87: 973-978.
  • Cui YJ, Cheng X, Weaver YM, Klaassen CD. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos. 2009; 37: 203-210.
  • Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther. 1995; 275: 1011-1018.
  • Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI, Taylor A, Xie HG, McKinsey J, Zhou S, Lan LB, Schuetz JD, Schuetz EG, Wilkinson GR. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001; 70: 189-199.
  • Paine MF, Ludington SS, Chen ML, Stewart PW, Huang SM, Watkins PB. Do men and women differ in proximal small intestinal CYP3A or P-glycoprotein expression? Drug Metab Dispos. 2005; 33: 426-433.
  • Mariana B, Adrián L, Guillermo V, Juan S, Laura M, Carlos L. Genderrelated differences on P-glycoprotein-mediated drug intestinal transport in rats. J Pharm Pharmacol. 2011; 63: 619–626.
  • Kong B, Csanaky IL, Aleksunes LM, Patni M, Chen Q, Ma X, Jaeschke H, Weir S, Broward M, Klaassen CD, Guo GL. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity. Toxicol Appl Pharmacol. 2012; 261: 189-195.
  • Rost D, Kopplow K, Gehrke S, Mueller S, Friess H, Ittrich C, Mayer D, Stiehl A. Gender-specific expression of liver organic anion transporters in rat. Eur J Clin Invest. 2005; 35: 635-643.
  • Hayashi T, Abe F. Kato M, Saito H, Ueyama J, Kondo Y, Imai K, Katoh M, Nadai M, Hasegawa T. Involvement of sulfate conjugation and multidrug resistance-associated protein 2 (Mrp2) in sex-related differences in the pharmacokinetics of garenoxacin in rats. J Infect Chemother. 2011; 17: 24-29.
  • Cherrington NJ, Slitt AL, Maher JM, Zhang XX, Zhang J, Huang W, Wan YJ, Moore DD, Klaassen CD. Induction of multidrug resistance protein 3 (mrp3) in vivo is independent of constitutive androstane receptor. Drug Metab Dispos. 2003; 31: 1315-1319.
  • Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos. 2005; 33, 947-955.
  • Chen C, Klaassen CD. Rat multidrug resistance protein 4 (Mrp4, Abcc4): molecular cloning, organ distribution, postnatal renal expression, and chemical inducibility. Biochem Biophys Res Commun. 2004; 317: 46-53.
  • Tanaka Y, Slitt AL, Leazer TM, Maher JM, Klaassen CD. Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem Biophys Res Commun. 2005; 326: 181-187.
  • Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005; 67: 1765-1771.
  • Dieter MZ, Maher JM, Cheng X, Klaassen CD. Expression and regulation of the sterol half-transporter genes ABCG5 and ABCG8 in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2004; 139: 209–218.
  • Cheng X, Klaassen CD. Tissue distribution, ontogeny, and hormonal regulation of xenobiotic transporters in mouse kidneys. Drug Metab Dispos. 2009; 37: 2178–2185.
  • Stewart PA, Beliveau R, Rogers KA. Cellular localization of P-glycoprotein in brain versus gonadal capillaries. J Histochem Cytochem. 1996; 44: 679-685.
  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992; 267: 24248-24252.
  • Kim WY, Benet LZ. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004; 21: 1284-1293.
  • Mutoh K, Tsukahara S, Mitsuhashi J, Katayama K, Sugimoto Y. Estrogen-mediated post transcriptional down-regulation of P-glycoprotein in MDR1-transduced human breast cancer cells. Cancer Sci. 2006; 97: 1198-1204.
  • Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC. P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate 2004; 59: 77-90.
  • Piekarz RL, Cohen D, Horwitz SB. Progesterone regulates the murine multidrug resistance mdr1b gene. J Biol Chem. 1993; 268: 761376
  • Arceci RJ, Croop JM, Horwitz SB, Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A. 1988; 85: 4350-4354.
  • Suzuki T, Zhao YL, Nadai M, Naruhashi K, Shimizu A, Takagi K, Hasegawa T. Gender-related differences in expression and function of hepatic P-glycoprotein and multidrug resistance-associated protein (Mrp2) in rats. Life Sci. 2006; 79: 455-461.
  • Cummins CL, Wu CY, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharmacol Ther. 2002; 72: 474-489.
  • Bebawy M, Chetty M. Gender differences in p-glycoprotein expression and function: effects on drug disposition and outcome. Curr Drug Metab. 2009; 10: 322-328. 1 MacLean C, Moenning U, Reichel A, Fricker G. Closing the gaps: a full scan of the intestinal expression of P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos. 2008; 36: 1249-1254. 1 Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M, Schwab M, Zanger UM. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 2003; 38: 978-988.
Toplam 118 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Articles
Yazarlar

Zeliha Pala Kara Bu kişi benim

Narin Öztürk Bu kişi benim

Dilek Öztürk Bu kişi benim

Alper Okyar Bu kişi benim

Yayımlanma Tarihi 29 Ocak 2014
Gönderilme Tarihi 29 Ocak 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 3 Sayı: 1

Kaynak Göster

APA Pala Kara, Z., Öztürk, N., Öztürk, D., Okyar, A. (2014). ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar. Clinical and Experimental Health Sciences, 3(1), 1-13. https://doi.org/10.5455/musbed.20130306115105
AMA Pala Kara Z, Öztürk N, Öztürk D, Okyar A. ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar. Clinical and Experimental Health Sciences. Şubat 2014;3(1):1-13. doi:10.5455/musbed.20130306115105
Chicago Pala Kara, Zeliha, Narin Öztürk, Dilek Öztürk, ve Alper Okyar. “ABC taşıyıcı Proteinleri: Sirkadiyan Ritimler Ve Cinsiyete bağlı farklılıklar”. Clinical and Experimental Health Sciences 3, sy. 1 (Şubat 2014): 1-13. https://doi.org/10.5455/musbed.20130306115105.
EndNote Pala Kara Z, Öztürk N, Öztürk D, Okyar A (01 Şubat 2014) ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar. Clinical and Experimental Health Sciences 3 1 1–13.
IEEE Z. Pala Kara, N. Öztürk, D. Öztürk, ve A. Okyar, “ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar”, Clinical and Experimental Health Sciences, c. 3, sy. 1, ss. 1–13, 2014, doi: 10.5455/musbed.20130306115105.
ISNAD Pala Kara, Zeliha vd. “ABC taşıyıcı Proteinleri: Sirkadiyan Ritimler Ve Cinsiyete bağlı farklılıklar”. Clinical and Experimental Health Sciences 3/1 (Şubat 2014), 1-13. https://doi.org/10.5455/musbed.20130306115105.
JAMA Pala Kara Z, Öztürk N, Öztürk D, Okyar A. ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar. Clinical and Experimental Health Sciences. 2014;3:1–13.
MLA Pala Kara, Zeliha vd. “ABC taşıyıcı Proteinleri: Sirkadiyan Ritimler Ve Cinsiyete bağlı farklılıklar”. Clinical and Experimental Health Sciences, c. 3, sy. 1, 2014, ss. 1-13, doi:10.5455/musbed.20130306115105.
Vancouver Pala Kara Z, Öztürk N, Öztürk D, Okyar A. ABC taşıyıcı proteinleri: Sirkadiyan ritimler ve cinsiyete bağlı farklılıklar. Clinical and Experimental Health Sciences. 2014;3(1):1-13.

14639   14640