Araştırma Makalesi
BibTex RIS Kaynak Göster

Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri

Yıl 2021, , 182 - 186, 31.12.2021
https://doi.org/10.31594/commagene.1031232

Öz

Bu çalışmada fiğ (Vicia sativa L.), nohut (Cicer arietinum L.) ve arpa (Hordeum vulgare L.) gelişimi üzerine etkilerini belirlemek amacıyla, bazı Şanlıurfa Baraj Göllerinde yoğun olarak bulunan Microcystis viridis ve Aphanizomenon gracile’in karışık kültürünün farklı dozlarının etkisi araştırılmıştır. Siyanobakteri karışımından hazırlanan dozlar, topraklara püskürtülerek uygulanmıştır. Kök uzunluğu bakımından fiğ de %1.5 uygulama dozu, nohut ve arpada ise %2’lik doz etkili bulunmuştur. Siyanobakteri karışımının %2’lik uygulama dozu her üç bitkinin bitki boyunu kontrole göre arttırmıştır. Kök kuru ve yaş ağırlığına %2’lik uygulama dozu nohut ve arpada etkili bulunurken, yeşil aksam ağırlığına ise fiğ ve nohutta %1.5 uygulama dozu etkili bulunmuştur.

Destekleyen Kurum

Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü tarafından desteklenmiştir.

Proje Numarası

(HÜBAP-19002)

Teşekkür

Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü (HÜBAP-19002) tarafından desteklenmiştir

Kaynakça

  • Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M…., &, Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology. 30, 1061–1072. https://doi.org/10.1007/s10811-017-1283-3
  • Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A.R., Giuffrida, F., Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology, 31, 465-470. https://doi.org/10.1007/s10811-018-1518-y
  • Becker, E.W. (1992). Micro-algae for human and animal consumption. In: Borowitzka M A, Borowitzka, L.J, (ed.), Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 222–256.
  • Cires, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022
  • Demirci, Ö., & Bildirici, N. (2020). Şanlıurfa ekolojik koşullarında yetiştirilen bazı nohut (Cicer arietinum L.) çeşitlerinin verim ve verim unsurlarının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 20, 656-662. https://doi.org/10.31590/ejosat.754332
  • De Pauw, N., & Persoone, G. (1992). Micro-algae for aquaculture. In: Borowitzka M A, Borowitzka L J, editors. Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 197–221.
  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5), 2929-2941.
  • Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolomic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758.
  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalgae Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2
  • Innok, S., Chunleuchanon, S., Boonkerd, N., & Teaumroong, N. (2009). Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology, 21, 737. https://doi.org/10.1007/s10811-009-9409-x
  • Johnson, E.A, & An, G.H. (1991). Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology, 11(4), 297–326. https://doi.org/10.3109/07388559109040622
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51. https://doi.org/10.1007/s12223-009-0007-8
  • Kızılgeçi, F., Akıncı, C., Albayrak, Ö., Biçer, B.T., Başdemir, F., & Yıldırım, M. (2016). Bazı arpa genotiplerinin Diyarbakır ve Şanlıurfa koşullarında verim ve kalite özellikleri açısından incelenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(1), 146-150. https://doi.org/10.21566/tarbitderg.280319
  • Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
  • Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
  • Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
  • Komárek, J., & Komárková, J. (2006) Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B.K., Kumar, A., ….& Saxena, A.K. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101.
  • Oswald W.J. (1992). Micro-algae and waste-water treatment. In: Borowitzka, M.A, Borowitzka, L.J, (eds). Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 305–328.
  • Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5), 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x
  • Puglisi, I., La Bella, E., Rovetto, E.I., Lo Pierro, A.R., & Baglieri, A. (2020). Biostimulant Effect and Biochemical Response in Lettuce Seedlings Treated with A Scenedesmus quadricauda Extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
  • Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
  • Rossi, F., & De Philippis, R. (2016). Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes involved in Their Biosynthesis. The Physiology of Microalgae Springer, 6, 565-590. https://doi.org/10.1007/978-3-319-24945-2_21
  • Sağlamtimur, T., Tükel, T., Gülcan, H., Anlarsal, A.E., & Tansı, V. (1991). GAP Bölgesinde yem bitkileri yetiştirme olanakları. Türkiye II. Çayır Mera kongresi Bildiri Kitabı, 213-223.
  • Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil, 296, 95–102. https://doi.org/10.1007/s11104-007-9293-6
  • Wilde, E.W, & Benemann, J.R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812. https://doi.org/10.1016/0734-9750(93)90003-6
  • Wuang, S.C., Khin, M.C., Chua, P.Q.D., & Luo, Y.D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009
  • Zhang, J., Wang, X., & Zhou, Q. (2017).Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass and Bioenergy, 97, 132-138. https://doi.org/10.1016/j.biombioe.2016.12.024

Effects of Microcystis viridis and Aphanizomenon gracile Mixed Culture on the Growth of Vetch, Chickpea, and Barley

Yıl 2021, , 182 - 186, 31.12.2021
https://doi.org/10.31594/commagene.1031232

Öz

In this study, the effects of different doses of mixed cultures of Microcystis viridis and Aphanizomenon gracile, which are densely found in some Şanlıurfa Dam Lakes, were investigated to determine their effects on the growth of vetch (Vicia sativa L.), chickpea (Cicer arietinum L.), and barley (Hordeum vulgare L.). The doses prepared from the cyanobacteria mixture were applied to the soil by spraying. In terms of root length, 1.5% application dose in vetch and 2% dose in chickpea and barley were found to be effective. The 2% application dose of the cyanobacteria mixture increased the plant height of all three plants compared to the control. While 2% application dose was found to be effective on root dry and wet weight in chickpea and barley, 1.5% application dose was found to be effective on shoot weight in vetch and chickpea.

Proje Numarası

(HÜBAP-19002)

Kaynakça

  • Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M…., &, Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology. 30, 1061–1072. https://doi.org/10.1007/s10811-017-1283-3
  • Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A.R., Giuffrida, F., Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology, 31, 465-470. https://doi.org/10.1007/s10811-018-1518-y
  • Becker, E.W. (1992). Micro-algae for human and animal consumption. In: Borowitzka M A, Borowitzka, L.J, (ed.), Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 222–256.
  • Cires, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022
  • Demirci, Ö., & Bildirici, N. (2020). Şanlıurfa ekolojik koşullarında yetiştirilen bazı nohut (Cicer arietinum L.) çeşitlerinin verim ve verim unsurlarının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 20, 656-662. https://doi.org/10.31590/ejosat.754332
  • De Pauw, N., & Persoone, G. (1992). Micro-algae for aquaculture. In: Borowitzka M A, Borowitzka L J, editors. Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 197–221.
  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5), 2929-2941.
  • Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolomic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758.
  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalgae Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2
  • Innok, S., Chunleuchanon, S., Boonkerd, N., & Teaumroong, N. (2009). Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology, 21, 737. https://doi.org/10.1007/s10811-009-9409-x
  • Johnson, E.A, & An, G.H. (1991). Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology, 11(4), 297–326. https://doi.org/10.3109/07388559109040622
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51. https://doi.org/10.1007/s12223-009-0007-8
  • Kızılgeçi, F., Akıncı, C., Albayrak, Ö., Biçer, B.T., Başdemir, F., & Yıldırım, M. (2016). Bazı arpa genotiplerinin Diyarbakır ve Şanlıurfa koşullarında verim ve kalite özellikleri açısından incelenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(1), 146-150. https://doi.org/10.21566/tarbitderg.280319
  • Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
  • Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
  • Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
  • Komárek, J., & Komárková, J. (2006) Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B.K., Kumar, A., ….& Saxena, A.K. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101.
  • Oswald W.J. (1992). Micro-algae and waste-water treatment. In: Borowitzka, M.A, Borowitzka, L.J, (eds). Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 305–328.
  • Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5), 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x
  • Puglisi, I., La Bella, E., Rovetto, E.I., Lo Pierro, A.R., & Baglieri, A. (2020). Biostimulant Effect and Biochemical Response in Lettuce Seedlings Treated with A Scenedesmus quadricauda Extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
  • Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
  • Rossi, F., & De Philippis, R. (2016). Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes involved in Their Biosynthesis. The Physiology of Microalgae Springer, 6, 565-590. https://doi.org/10.1007/978-3-319-24945-2_21
  • Sağlamtimur, T., Tükel, T., Gülcan, H., Anlarsal, A.E., & Tansı, V. (1991). GAP Bölgesinde yem bitkileri yetiştirme olanakları. Türkiye II. Çayır Mera kongresi Bildiri Kitabı, 213-223.
  • Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil, 296, 95–102. https://doi.org/10.1007/s11104-007-9293-6
  • Wilde, E.W, & Benemann, J.R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812. https://doi.org/10.1016/0734-9750(93)90003-6
  • Wuang, S.C., Khin, M.C., Chua, P.Q.D., & Luo, Y.D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009
  • Zhang, J., Wang, X., & Zhou, Q. (2017).Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass and Bioenergy, 97, 132-138. https://doi.org/10.1016/j.biombioe.2016.12.024
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Göksal Sezen 0000-0001-9054-851X

Çiğdem Küçük 0000-0001-5688-5440

Proje Numarası (HÜBAP-19002)
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 1 Aralık 2021
Kabul Tarihi 8 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.