Araştırma Makalesi
BibTex RIS Kaynak Göster

Kurşun Asetat İle Oksidatif Stres Oluşturulan Rat Karaciğer Dokuları Üzerine 3-Benzoil-7-Hidroksi Kumarin’in Lipit Peroksidasyon ve Mineraller Üzerine Koruyucu Etkisi

Yıl 2022, , 141 - 145, 31.12.2022
https://doi.org/10.31594/commagene.1163742

Öz

Kurşun toksik bir maddedir ve insan metabolizmasına hasar vermektedir. Kumarin türevli maddelerin antioksidant, antikanser ve antibakteriyel gibi birçok etkileri vardır. Bu çalışmada, kurşun asetat ile oksidatif stres oluşturulan rat karaciğer dokuları üzerine 3-benzoil-7-hidroksi kumarin’in etkileri araştırıldı. Çalışmada ratlar 4 gruba ayrıldı. Kontrol grubu (K), Kumarin grubu (KUM), Kurşun asetat grubu (P) ve Kumarin+Kurşun asetat grubu (KUMP) grupları oluşturuldu. Ratların karaciğer dokularında malondialdehit (MDA), kurşun (Pb), demir (Fe), çinko (Zn), mangan (Mn) ve bakır (Cu) düzeyleri tespit edildi. P grubu MDA düzeyi diğer gruplara göre arttı. P grubu MDA düzeyine göre KUMP grubunda azalma gözlendi. P grubu Pb ve Fe düzeyi K grubuna göre artarken, KUMP grubu Pb ve Fe düzeyi P grubuna göre azaldı. K grubu Mn düzeyi diğer gruplara göre azaldığı gözlendi. Sonuç olarak kurşun asetatın karaciğerde oluşturduğu yüksek lipit peroksidasyonu, kurşun ve demir metabolizmasını 3-benzoil-7-hidroksi kumarin molekülünün koruduğunu düşünmekteyiz.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

Bu çalışmada, Doç. Dr. Ahmet ÖZKAYA, Prof. Dr. Murat KOCA ve Prof. Dr. Adnan KURT’a desteklerinden dolayı teşekkür ederim.

Kaynakça

  • Abdel Moneim, A.E., Dkhil, M.A., & Al-Quraishy, S. (2011). The redox status in rats treated with flaxseed oil and lead-induced hepatotoxicity. Biological trace element research, 143(1), 457–467. https://doi.org/10.1007/s12011-010-8882-z
  • Aksu, D.S., Saglam, Y.S., Yildirim, S., & Aksu, T. (2017). Effect of pomegranate (Punica granatum L.) juice on kidney, liver, heart and testis histopathological changes, and the tissues lipid peroxidation and antioxidant status in lead acetate-treated rats. Cellular and molecular biology, 63(10), 33-42. https://doi.org/10.14715/cmb/2017.63.10.5
  • Alonso, M.L., Montaña, F.P., Miranda, M., Castillo, C., Hern´andez, J., & Benedito, J.L. (2004). Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals, 17(4), 389-97. https://doi.org/10.1023/B:BIOM.0000029434.89679.a2
  • Atmaca, M., Bilgin, H.M., Obay, B.D., Diken, H., Kelle, M., & Kale, E. (2011). The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. Journal of physiology and biochemistry, 67(4), 569–576. https://doi.org/10.1007/s13105-011-0103-5
  • Aykin-Burns, N., Laegeler, A., Kellogg, G., & Ercal, N. (2003). Oxidative effects of lead in young and adult Fisher 344 rats. Archives of environmental contamination and toxicology, 44(3), 417–420. https://doi.org/10.1007/s00244-002-2023-4
  • Baek, N.I., Ahn, E.M., Kim, H.Y., & Park, Y.D. (2000). Furanocoumarins from the root of Angelica dahurica. Archives of pharmacal research, 23(5), 467-470. https://doi.org/10.1007/BF02976574
  • Bennet, C., Bettaiya, R., Rajanna, S., Baker, L., Yallapragada, P.R., Brice J.J., …, & Bokara, K.K. (2007). Region specific increase in the antioxidant enzymes and lipidperoxidation products in the brain of rats exposed to lead. Free radical research, 41(3), 267–273. https://doi.org/10.1080/10715760600889855
  • Crichton, E.G., & Waterman, P.G. (1978). Dihydromammea c/ob: a new coumarin from the seed of Mammea africana. Phytochemistry, 17(10), 1783-1786. https://doi.org/10.1016/S0031-9422(00)88695-1
  • Fischbein, A. (1992). Occupational and environmental lead exposure. In: Ed. Rom WN. Environmental and occupational medicine, 2nd Ed. Boston: Little Brown & Co, 735– 758.
  • Fort, D., Rao, K., Jolad, S., Luo, J., Carlson, T., & King, S. (2000). Antihyperglycemic activity of Teramnus labialis (Fabaceae). Phytomedicine : international journal of phytotherapy and phytopharmacology, 6(6), 465-467. https://doi.org/10.1016/S0944-7113(00)80075-6
  • Khan, N., Sharma, S., & Sultana. S. (2004a). Attenuation of potassium bromate-induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response. Redox report: communications in free radical research, 9(1), 19-28. https://doi.org/10.1179/135100004225003860
  • Khan, N., Sharma, S., & Sultana, S. (2004b). Amelioration of ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and tumor promotion response by coumarin (1,2-benzopyrone) in Wistar rats. Cancer letters, 210(1), 17–26. https://doi.org/10.1016/j.canlet.2004.01.011
  • Kurt, A., & Koca, M. (2016). Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites. Journal of Engineering Research, 4(4), 46-65.
  • Kurt, A., Kaya, M., & Koca, M. (2016). Synthesis and characterization of coumarin derived surface active monomer. Adıyaman University Journal of Science, 6(1), 110-121.
  • Kurt, A., & Topsoy, O.K. (2017). Preparation of novel coumarin cyclic polymer/montmorillonite based nanocomposites. Russian Journal of Applied Chemistry, 90(12), 2019−2027. https://doi.org/10.1134/S1070427217120199
  • Kurt, A., Ayhan, A.F., & Koca, M. (2018). Kumarin Türevli Kopolimerlerin Sentezi ve Karakterizasyonu. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 880-887. https://doi.org/10.16984/saufenbilder.322354
  • Kurt, A., B. Gunduz, B., & Koca, M. (2019). A detailed study on the optical properties of 3-benzoyl-7-hydroxy coumarin compound in different solvents and concentrations. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 227-236. https://doi.org/10.20450/mjcce.2019.1403
  • Lien, E.J., Ren, S., Bui, H.H., & Wang, R. (1999). Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Biology and Medicine, 26(3–4), 285–294. https://doi.org/10.1016/S0891-5849(98)00190-7
  • Lin, H.C., Tsai, S.H., Chen, C.S., Chang, Y.C., Lee, C.M., Lai, Z.Y., & Lin, C.M. (2008). Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochemical pharmacology, 75(6), 1416–1425. https://doi.org/10.1016/j.bcp.2007.11.023
  • Liu, C.M., Ma, J.Q., & Sun, Y.Z. (2011). Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food and chemical toxicology, 49(12), 3119-3127. https://doi.org/10.1016/j.fct.2011.09.007
  • Liu, C.M., Ma, J.Q., & Sun, Y.Z. (2012). Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Experimental and Toxicologic Pathology, 64(6), 575-582. https://doi.org/10.1016/j.etp.2010.11.016
  • Lockitch, G. (1993). Perspectives on lead toxicity. Clinical Biochemistry, 26(5), 371–381. https://doi.org/10.1016/0009-9120(93)90113-K
  • Luo, K., Sun, J., Chan, J.Y.W., Yang, L., Wu, S., Fung, K.P., & Liu, F. (2011). Anticancer effects of imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor-and mitochondriamediated pathways. Chemotherapy, 57(6), 449-459. https://doi.org/10.1159/000331641
  • Mansouri, M.T., & Cauli, O. (2009). Motor alterations induced by chronic lead exposure. Environmental toxicology and pharmacology, 27(3), 307–313. https://doi.org/10.1016/j.etap.2009.01.003
  • Mehana, E.E., Meki, A.R., & Fazili, K.M. (2012). Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Experimental and toxicologic pathology, 64(4), 291–295. https://doi.org/10.1016/j.etp.2010.09.001
  • Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. The Indian journal of medical research, 126(6), 518–527.
  • Oyagbemi, A., Saba, A., Omobowale, T., Akinrinde, A., Ogunpolu, B., & Daramola, O. (2014). Lack of reversal from lead acetate-induced hepatotoxicity, free radical generation and oxidative stress in Wistar rats (1139.17). The FASEB journal, 28(1 supplement). https://doi.org/10.1096/fasebj.28.1_supplement.1139.17
  • Özkaya, A., Sahin, Z., Dag, U., & Ozkaraca, M. (2016). Effects of Naringenin on Oxidative Stress and Histopathological Changes in the Liver of Lead Acetate Administered Rats. Journal of biochemical and molecular toxicology, 30(5), 243-248. https://doi.org/10.1002/jbt.21785
  • Özkaya, A., Sahin, Z., Kuzu, M., Saglam, Y.S., Ozkaraca, M., Uckun, M., … & Yologlu, S. (2018). Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats. Archives of physiology and biochemistry, 124(1), 80-87. https://doi.org/10.1080/13813455.2017.1364772
  • Özkaya, A., & Türkan, K. (2021). Protective Effects of 3-benzoyl-7-hydroxy Coumarin on Liver of Adult Rat Exposed to Aluminium Chloride. Acta chimica Slovenica, 68(1), 222–228. http://doi.org/10.17344/acsi.2020.6390
  • Patil, A.D., Freyer, A.J., Eggleston, D.S., Haltiwanger, R.C., Bean, M.F., Taylor, P.B., …, & Bartus, H.R. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. Journal of medicinal chemistry, 36(26), 4131-4138. https://doi.org/10.1021/jm00078a001
  • Patra, R.C., Swarup, D., & Dwivedi, S.K. (2001). Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology, 162(2), 81–88. https://doi.org/10.1016/S0300-483X(01)00345-6
  • Piller, N.B. (1975). A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. British journal of experimental pathology, 56(6), 554–559.
  • Placer, Z.A., Cushman, L.L., & Johnson, B.C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Poole, S.K., & Poole, C.F. (1994). Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst, 119, 113-120. https://doi.org/10.1039/AN9941900113
  • Rosselli, S., Maggio, A.M., Faraone, N., Spadaro, V., Morris-Natschke S.L., Bastow, K.F., & Bruno, M. (2009). The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Natural product communications, 4(12), 1701-1706. https://doi.org/10.1177/1934578X0900401219
  • Shin, E., Choi, K.-M., Yoo, H.S., Lee, C.K., Hwang, B.Y., & Lee, M.K. (2010). Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biological & pharmaceutical bulletin, 33(9), 1610-1614. https://doi.org/10.1248/bpb.33.1610
  • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., …, & Boyd, M.R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening, Journal of the National Cancer Institute, 82(13), 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  • Spino, C., M. Dodier, M., & Sotheeswaran, S. (1998). Anti-HIV coumarins from Calophyllum seed oil. Bioorganic & medicinal chemistry letters, 8(24), 3475-3478. https://doi.org/10.1016/S0960-894X(98)00628-3
  • Teng, C.M., Lin, C.H., Ko, F.N., Wu, T.S., & Huang, T.F. (1994). The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn-Schmiedeberg's archives of pharmacology, 349(2), 202-208. https://doi.org/10.1007/BF00169838
  • Tseng, A. (1991). Proc. American Association for Cancer Research, 32, Abstract No. 2257
  • Venugopala, K.N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 963248, 1-14. https://doi.org/10.1155/2013/963248
  • Wang, J., Yang, Z., Lin, L., Zhao, Z., Liu, Z., & Liu, X. (2012). Protective effect of naringenin against lead-induced oxidative stress in rats. Biological trace element research, 146(3), 354-359. https://doi.org/10.1007/s12011-011-9268-6
  • Whang, W.K., Park, H.S., Ham, I., Oh, M., Namkoong, H., Kim, H.K., …, & Park, Y.G. (2005). Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental & molecular medicine, 37(5), 436-446. https://doi.org/10.1038/emm.2005.54
  • Wu, C.R., Huang, M.Y., Lin, Y.T., Ju, H.Y., & Ching, H. (2007). Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry, 104(4), 1464–1471. https://doi.org/10.1016/j.foodchem.2007.02.023
  • Xia, D., Yu, X., Liao, S., Shao, Q., Mou, H., & Ma, W. (2010). Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. Journal of ethnopharmacology, 130(2), 414–420. https://doi.org/10.1016/j.jep.2010.05.025
  • Xiang, J.J., Zhai, Y.F., Tang, Y., Wang, H., Liu, B., & Guo, C.W. (2010). A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the leadDTPA complex. Environmental Pollution, 158(5), 1376–1380. https://doi.org/10.1016/j.envpol.2010.01.002
  • Yang, Y., Wang, H., Guo, Y., Lei, W., Wang, J., Hu, X., …, & He, Q. (2016). Metal Ion Imbalance-Related Oxidative Stress Is Involved in the Mechanisms of Liver Injury in a Rat Model of Chronic Aluminum Exposure. Biological trace element research, 173(1), 126–131. https://doi.org/10.1007/s12011-016-0627-1
  • Yoloğlu, S. (2017). Kurşuna maruz kalan rat dokularında geraniol'ün etkileri (465222). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp.

Protective Effect of 3-Benzoyl-7-Hydroxy Coumarin on Lipid Peroxidation and Minerals on Rat Liver Tissues Induced Oxidative Stress with Lead Acetate

Yıl 2022, , 141 - 145, 31.12.2022
https://doi.org/10.31594/commagene.1163742

Öz

Lead is a toxic substance and damages human metabolism. Coumarin-derived substances have many effects such as antioxidant, anticancer, and antibacterial ones. In this study, the effects of 3-benzoyl-7-hydroxy coumarin on rat liver tissues under oxidative stress with lead acetate were investigated. In the study, rats were divided into 4 groups. Control group (K), Coumarin group (KUM), Lead acetate group (P) and Coumarin+Lead acetate group (KUMP) groups were formed. Malondialdehyde (MDA), lead (Pb), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) levels were determined in the liver tissues of the rats. MDA level of P group increased compared to the other groups. A decrease was observed in the KUMP group compared to the P group MDA level. While the Pb and Fe levels of the P group increased compared to the K group, the Pb and Fe levels of the KUMP group decreased compared to the P group. As a result, it is concluded that the 3-benzoyl-7-hydroxy coumarin molecule protects the high lipid peroxidation, lead, and iron metabolism caused by lead acetate in the liver.

Proje Numarası

-

Kaynakça

  • Abdel Moneim, A.E., Dkhil, M.A., & Al-Quraishy, S. (2011). The redox status in rats treated with flaxseed oil and lead-induced hepatotoxicity. Biological trace element research, 143(1), 457–467. https://doi.org/10.1007/s12011-010-8882-z
  • Aksu, D.S., Saglam, Y.S., Yildirim, S., & Aksu, T. (2017). Effect of pomegranate (Punica granatum L.) juice on kidney, liver, heart and testis histopathological changes, and the tissues lipid peroxidation and antioxidant status in lead acetate-treated rats. Cellular and molecular biology, 63(10), 33-42. https://doi.org/10.14715/cmb/2017.63.10.5
  • Alonso, M.L., Montaña, F.P., Miranda, M., Castillo, C., Hern´andez, J., & Benedito, J.L. (2004). Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals, 17(4), 389-97. https://doi.org/10.1023/B:BIOM.0000029434.89679.a2
  • Atmaca, M., Bilgin, H.M., Obay, B.D., Diken, H., Kelle, M., & Kale, E. (2011). The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. Journal of physiology and biochemistry, 67(4), 569–576. https://doi.org/10.1007/s13105-011-0103-5
  • Aykin-Burns, N., Laegeler, A., Kellogg, G., & Ercal, N. (2003). Oxidative effects of lead in young and adult Fisher 344 rats. Archives of environmental contamination and toxicology, 44(3), 417–420. https://doi.org/10.1007/s00244-002-2023-4
  • Baek, N.I., Ahn, E.M., Kim, H.Y., & Park, Y.D. (2000). Furanocoumarins from the root of Angelica dahurica. Archives of pharmacal research, 23(5), 467-470. https://doi.org/10.1007/BF02976574
  • Bennet, C., Bettaiya, R., Rajanna, S., Baker, L., Yallapragada, P.R., Brice J.J., …, & Bokara, K.K. (2007). Region specific increase in the antioxidant enzymes and lipidperoxidation products in the brain of rats exposed to lead. Free radical research, 41(3), 267–273. https://doi.org/10.1080/10715760600889855
  • Crichton, E.G., & Waterman, P.G. (1978). Dihydromammea c/ob: a new coumarin from the seed of Mammea africana. Phytochemistry, 17(10), 1783-1786. https://doi.org/10.1016/S0031-9422(00)88695-1
  • Fischbein, A. (1992). Occupational and environmental lead exposure. In: Ed. Rom WN. Environmental and occupational medicine, 2nd Ed. Boston: Little Brown & Co, 735– 758.
  • Fort, D., Rao, K., Jolad, S., Luo, J., Carlson, T., & King, S. (2000). Antihyperglycemic activity of Teramnus labialis (Fabaceae). Phytomedicine : international journal of phytotherapy and phytopharmacology, 6(6), 465-467. https://doi.org/10.1016/S0944-7113(00)80075-6
  • Khan, N., Sharma, S., & Sultana. S. (2004a). Attenuation of potassium bromate-induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response. Redox report: communications in free radical research, 9(1), 19-28. https://doi.org/10.1179/135100004225003860
  • Khan, N., Sharma, S., & Sultana, S. (2004b). Amelioration of ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and tumor promotion response by coumarin (1,2-benzopyrone) in Wistar rats. Cancer letters, 210(1), 17–26. https://doi.org/10.1016/j.canlet.2004.01.011
  • Kurt, A., & Koca, M. (2016). Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites. Journal of Engineering Research, 4(4), 46-65.
  • Kurt, A., Kaya, M., & Koca, M. (2016). Synthesis and characterization of coumarin derived surface active monomer. Adıyaman University Journal of Science, 6(1), 110-121.
  • Kurt, A., & Topsoy, O.K. (2017). Preparation of novel coumarin cyclic polymer/montmorillonite based nanocomposites. Russian Journal of Applied Chemistry, 90(12), 2019−2027. https://doi.org/10.1134/S1070427217120199
  • Kurt, A., Ayhan, A.F., & Koca, M. (2018). Kumarin Türevli Kopolimerlerin Sentezi ve Karakterizasyonu. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 880-887. https://doi.org/10.16984/saufenbilder.322354
  • Kurt, A., B. Gunduz, B., & Koca, M. (2019). A detailed study on the optical properties of 3-benzoyl-7-hydroxy coumarin compound in different solvents and concentrations. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 227-236. https://doi.org/10.20450/mjcce.2019.1403
  • Lien, E.J., Ren, S., Bui, H.H., & Wang, R. (1999). Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Biology and Medicine, 26(3–4), 285–294. https://doi.org/10.1016/S0891-5849(98)00190-7
  • Lin, H.C., Tsai, S.H., Chen, C.S., Chang, Y.C., Lee, C.M., Lai, Z.Y., & Lin, C.M. (2008). Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochemical pharmacology, 75(6), 1416–1425. https://doi.org/10.1016/j.bcp.2007.11.023
  • Liu, C.M., Ma, J.Q., & Sun, Y.Z. (2011). Protective role of puerarin on lead-induced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food and chemical toxicology, 49(12), 3119-3127. https://doi.org/10.1016/j.fct.2011.09.007
  • Liu, C.M., Ma, J.Q., & Sun, Y.Z. (2012). Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Experimental and Toxicologic Pathology, 64(6), 575-582. https://doi.org/10.1016/j.etp.2010.11.016
  • Lockitch, G. (1993). Perspectives on lead toxicity. Clinical Biochemistry, 26(5), 371–381. https://doi.org/10.1016/0009-9120(93)90113-K
  • Luo, K., Sun, J., Chan, J.Y.W., Yang, L., Wu, S., Fung, K.P., & Liu, F. (2011). Anticancer effects of imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor-and mitochondriamediated pathways. Chemotherapy, 57(6), 449-459. https://doi.org/10.1159/000331641
  • Mansouri, M.T., & Cauli, O. (2009). Motor alterations induced by chronic lead exposure. Environmental toxicology and pharmacology, 27(3), 307–313. https://doi.org/10.1016/j.etap.2009.01.003
  • Mehana, E.E., Meki, A.R., & Fazili, K.M. (2012). Ameliorated effects of green tea extract on lead induced liver toxicity in rats. Experimental and toxicologic pathology, 64(4), 291–295. https://doi.org/10.1016/j.etp.2010.09.001
  • Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. The Indian journal of medical research, 126(6), 518–527.
  • Oyagbemi, A., Saba, A., Omobowale, T., Akinrinde, A., Ogunpolu, B., & Daramola, O. (2014). Lack of reversal from lead acetate-induced hepatotoxicity, free radical generation and oxidative stress in Wistar rats (1139.17). The FASEB journal, 28(1 supplement). https://doi.org/10.1096/fasebj.28.1_supplement.1139.17
  • Özkaya, A., Sahin, Z., Dag, U., & Ozkaraca, M. (2016). Effects of Naringenin on Oxidative Stress and Histopathological Changes in the Liver of Lead Acetate Administered Rats. Journal of biochemical and molecular toxicology, 30(5), 243-248. https://doi.org/10.1002/jbt.21785
  • Özkaya, A., Sahin, Z., Kuzu, M., Saglam, Y.S., Ozkaraca, M., Uckun, M., … & Yologlu, S. (2018). Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats. Archives of physiology and biochemistry, 124(1), 80-87. https://doi.org/10.1080/13813455.2017.1364772
  • Özkaya, A., & Türkan, K. (2021). Protective Effects of 3-benzoyl-7-hydroxy Coumarin on Liver of Adult Rat Exposed to Aluminium Chloride. Acta chimica Slovenica, 68(1), 222–228. http://doi.org/10.17344/acsi.2020.6390
  • Patil, A.D., Freyer, A.J., Eggleston, D.S., Haltiwanger, R.C., Bean, M.F., Taylor, P.B., …, & Bartus, H.R. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. Journal of medicinal chemistry, 36(26), 4131-4138. https://doi.org/10.1021/jm00078a001
  • Patra, R.C., Swarup, D., & Dwivedi, S.K. (2001). Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology, 162(2), 81–88. https://doi.org/10.1016/S0300-483X(01)00345-6
  • Piller, N.B. (1975). A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. British journal of experimental pathology, 56(6), 554–559.
  • Placer, Z.A., Cushman, L.L., & Johnson, B.C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Poole, S.K., & Poole, C.F. (1994). Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst, 119, 113-120. https://doi.org/10.1039/AN9941900113
  • Rosselli, S., Maggio, A.M., Faraone, N., Spadaro, V., Morris-Natschke S.L., Bastow, K.F., & Bruno, M. (2009). The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Natural product communications, 4(12), 1701-1706. https://doi.org/10.1177/1934578X0900401219
  • Shin, E., Choi, K.-M., Yoo, H.S., Lee, C.K., Hwang, B.Y., & Lee, M.K. (2010). Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biological & pharmaceutical bulletin, 33(9), 1610-1614. https://doi.org/10.1248/bpb.33.1610
  • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., …, & Boyd, M.R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening, Journal of the National Cancer Institute, 82(13), 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  • Spino, C., M. Dodier, M., & Sotheeswaran, S. (1998). Anti-HIV coumarins from Calophyllum seed oil. Bioorganic & medicinal chemistry letters, 8(24), 3475-3478. https://doi.org/10.1016/S0960-894X(98)00628-3
  • Teng, C.M., Lin, C.H., Ko, F.N., Wu, T.S., & Huang, T.F. (1994). The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn-Schmiedeberg's archives of pharmacology, 349(2), 202-208. https://doi.org/10.1007/BF00169838
  • Tseng, A. (1991). Proc. American Association for Cancer Research, 32, Abstract No. 2257
  • Venugopala, K.N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 963248, 1-14. https://doi.org/10.1155/2013/963248
  • Wang, J., Yang, Z., Lin, L., Zhao, Z., Liu, Z., & Liu, X. (2012). Protective effect of naringenin against lead-induced oxidative stress in rats. Biological trace element research, 146(3), 354-359. https://doi.org/10.1007/s12011-011-9268-6
  • Whang, W.K., Park, H.S., Ham, I., Oh, M., Namkoong, H., Kim, H.K., …, & Park, Y.G. (2005). Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental & molecular medicine, 37(5), 436-446. https://doi.org/10.1038/emm.2005.54
  • Wu, C.R., Huang, M.Y., Lin, Y.T., Ju, H.Y., & Ching, H. (2007). Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chemistry, 104(4), 1464–1471. https://doi.org/10.1016/j.foodchem.2007.02.023
  • Xia, D., Yu, X., Liao, S., Shao, Q., Mou, H., & Ma, W. (2010). Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. Journal of ethnopharmacology, 130(2), 414–420. https://doi.org/10.1016/j.jep.2010.05.025
  • Xiang, J.J., Zhai, Y.F., Tang, Y., Wang, H., Liu, B., & Guo, C.W. (2010). A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the leadDTPA complex. Environmental Pollution, 158(5), 1376–1380. https://doi.org/10.1016/j.envpol.2010.01.002
  • Yang, Y., Wang, H., Guo, Y., Lei, W., Wang, J., Hu, X., …, & He, Q. (2016). Metal Ion Imbalance-Related Oxidative Stress Is Involved in the Mechanisms of Liver Injury in a Rat Model of Chronic Aluminum Exposure. Biological trace element research, 173(1), 126–131. https://doi.org/10.1007/s12011-016-0627-1
  • Yoloğlu, S. (2017). Kurşuna maruz kalan rat dokularında geraniol'ün etkileri (465222). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Cihan Çitil 0000-0002-3006-4035

Proje Numarası -
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 18 Ağustos 2022
Kabul Tarihi 3 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çitil, C. (2022). Kurşun Asetat İle Oksidatif Stres Oluşturulan Rat Karaciğer Dokuları Üzerine 3-Benzoil-7-Hidroksi Kumarin’in Lipit Peroksidasyon ve Mineraller Üzerine Koruyucu Etkisi. Commagene Journal of Biology, 6(2), 141-145. https://doi.org/10.31594/commagene.1163742
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.