Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Dye Decolorization Potential of Gluconacetobacter xylinus and Newly Isolated Trametes trogii

Yıl 2025, Cilt: 9 Sayı: 2, 232 - 239, 18.12.2025
https://doi.org/10.31594/commagene.1681103

Öz

In this study, the dye removal ability of Gluconacetobacter xylinus NRRL B759 during bacterial cellulose production and dye decolorization efficiency of the newly isolated white rot fungus Trametes trogii were investigated. The most efficient results for Reactive Blue 171 dye were obtained on the 6th day under both static and agitated conditions at 30°C. The best results for Remazol Brilliant Blue R dye were determined at 30°C on the 10th and 8th days for static and agitated conditions, respectively. Most importantly, it was observed that biosorption was the main mechanism for dye removal activity of this bacterium. The decolorization ability of fungus was investigated under batch and repeated-batch processes. The most effective decolorization values were 48% on the 8th day for RB171 dye and 83% on the 6th day for RBBR dye under batch process. Decolorization activity of the pellets was tested under repeated-batch experiments in both distilled water and Sabouraud Dextrose Broth (SDB) media. In distilled water media, lower decolorization values were obtained for both dyes compared to SDB media. In SDB medium for RB171, the decolorization values are 70% in the 1st cycle and 19% in the 5th cycle. The RBBR dye decolorization values was 57% in the 1st cycle, while this value was reached 74% in the 5th cycle. The decolorization mechanism of the pellets was mainly a result of microbial metabolism.

Etik Beyan

Ethics committee approval is not required for this study.

Teşekkür

We would like to thank Prof. Dr. Abbas GÜNGÖRDÜ for his assistance with the statistical analysis.

Kaynakça

  • Akoglu, A., Karahan, A.G., Cakmakci, M.L., & Cakir, I. (2010). Bakteriyel selülozun özellikleri ve gıda sanayide kullanımı. The Journal of Food, 35(2), 127-134.
  • Anbia, M., Hariri, S., & Ashrafizadeh, S.N. (2010). Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Applied Surface Sience, 256(10), 3228-3233, https://doi.org/10.1016/j.apsusc.2009.12.010
  • Apohan, E., & Yesilada, O. (2005). Role of white rot fungus Funalia trogii in detoxification of textile dyes. Journal of Basic Microbiology, 45(2), 99- 105. https://doi.org/10.1002/jobm.200410463
  • Azeredo, H.M.C., Barud, H., Farinas, C.S., Vasconcellos, V.M., & Claro, A.M. (2019) Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3-7. https://doi.org/10.3389/fsufs.2019.00007
  • Betlej, I., Zakaria, S., Krajewski, K.J., & Boruszewski, P. (2021). Bacterial cellulose -properties and its potential application. Sains Malaysiana, 50(2), 493- 505. https://doi.org/10.3389/fsufs.2019.00007
  • Birben, M. (2019). Microbial selülozun boya gideriminde kullanımının araştırılması. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Birhanli, E., & Yesilada, O. (2010). Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochemical Engineering Journal, 52(1), 33-37. https://doi.org/10.1016/j.bej.2010.06.019
  • Birhanli, E., Erdogan, S., Yesilada, O., & Onal, Y. (2013). Laccase production by newly isolated white rot fungus Funalia trogii: Effect of immobilization matrix on laccase production. Biochemical Engineering Journal, 71, 134–139. https://doi.org/10.1016/j.bej.2012.12.002
  • Boran, F. (2022). Dye removing with dry and wet forms of pure bacterial cellulose produced by Gluconacetobacter xylinus. Commagene Journal of Biology, 6(1), 1-5. https://doi.org/10.31594/commagene.1037538
  • Collivignarelli, M.C., Abba, A., Miino, M.C., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727-745. https://doi.org/10.1016/j.jenvman.2018.11.094
  • Dashti, M.G., Abdeshahian, P., Yusoff, W.M.W., Kalil, M.S., & Hamid, A.A. (2014). Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid by Cunninghamella bainieri 2A1. Hindawi Publishing Corporation BioMed Research International, 2014(1), 831783. https://doi.org/10.1155/2014/831783
  • Deshpande, P., Wankar, S., Mahajan, S., Patil, Y., Rajwade, J. & Kulkarni, A. (2023). Bacterial cellulose: Natural biomaterial for medical and environmental applications. Journal of Natural Fibers, 20(2), 2218623. https://doi.org/10.1080/15440478.2023.2218623
  • Dogan, E.E., Yesilada, E., Ozata, L., & Yologlu, S. (2005). Genotoxicity testing of four textile dyes in two crosses of Drosophila using wing somatic mutation and recombination test. Drug and Chemical Toxicology, 28(3), 289-301. https://doi.org/10.1081/DCT-200064473
  • Dogan, N.M., Top, B., Bozbeyoglu, N.N., Bulut, D.T., Karabulut, O., & Uguzdogan, E. (2024). Production and characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale University Journal of Engineering Sciences, 30(2), 271-281. https://doi.org/10.5505/pajes.2023.25256
  • Esa, F., Tasirin, S.M., & Rahman, N.A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. Journal of Biotechnology, 101(1), 49-56. https://doi.org/10.1016/S0168-1656(02)00302-4
  • Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007
  • Gul, U.D. (2018). Bioremediation of dyes in textile wastewater. Turkish Journal of Scientific Reviews, 11(2), 24-28
  • Hadibarata, T., Adnan, L. A., Yusoff, A.R.M., Rubiyatno, A.Y., Zubir, M.M.F.A., Khudhair, A. B., Teh, Z. C., & Naser M. A. (2013). Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, Soil, Pollution, 224, 1595. https://doi.org/10.1007/s11270-013-1595-0
  • Herath, I.S., Udayanga, D., Jayasanka, D.J., & Hawewasam, C. (2024). Textile dye decolorization by white rot fungi–A review. Bioresource Technology Reports, 25, 101687. https://doi.org/10.1016/j.biteb.2023.101687
  • Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26, 2895-2911. https://doi.org/10.1007/s10570-019-02307-1
  • Kahraman, S., & Yeşilada, O. (2003). Decolorization and bioremeditation of molasses wastewater by white-rot fungi in a semi-solid-state condition. Folia Microbiologica, 48, 525-528. https://doi.org/10.1007/BF02931335
  • Khan, H., Kadam, A., & Dutt, D. (2020). Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydrate Polymers, 229, 115513. https://doi.org/10.1016/j.carbpol.2019.115513
  • Knapp, J.S., Zhang, F.M., & Tapley, K.N. (1997). Decolourisation of Orange II by a wood-rotting fungus. Journal of Chemical Technology Biotechnology, 69(3), 289-296. https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<289::AID-JCTB702>3.0.CO;2-H
  • Lalnunhlimi, S., & Krishnaswamy, V. (2016). Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of Microbiology, 47, 39-46. https://doi.org/10.1016/j.bjm.2015.11.013
  • Leal, A.N.R., Lima, A.C.A., Azevedo, M.G.F.A., Santos, D.K.D.N., Zadian, L.E.M.C., Lima, V.F., & Filho, I.J.C. (2021). Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Scienta Plena, 17, 034201. https://doi.org/10.14808/sci.plena.2021.034201
  • Mbituyimana, B., Liu, L., Ye, W., Boni, B.O.O., Zhang, K., Chen, J., Thomas, S., Vasilievich, V.R., Shi, Z., & Yang, G. (2021). Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 273, 118565. https://doi.org/10.1016/j.carbpol.2021.118565
  • Mohite, B.V., & Patil, S.V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101-110. https://doi.org/10.1002/bab.1148
  • Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. https://doi.org/10.1016/j.eurpolymj.2019.109365
  • Pavithra, K.G., Kumar, P.S., Jaikumar, V., & Rajan, P.S. (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1-19. https://doi.org/10.1016/j.jiec.2019.02.011
  • Ramasany, R., Ahmed, H.A.M., & Karthik, S.S. (2012). Development of microbial consortium for the biodegradation and biodecolorization of textile effluents. Journal of Urban and Enviromental Engineering, 6(1), 36-41. https://doi.org/10.4090/juee.2012.v6n1.036041
  • Rangaswamy, B.E., Vanitha, K.P., & Hungun, B.S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 280784, 1-8. https://doi.org/10.1155/2015/280784
  • Sam, M., & Yesilada, O. (2001). Decolorization of Orange II dye by white-rot fungi. Folia Microbiologica, 46, 143-145. https://doi.org/10.1007/BF02873593
  • Shi, Z., Zhang, Y., Phillips, G.O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012
  • Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10, 1-8. https://doi.org/10.1007/BF02931175
  • Si, J., Cui, B.K., & Dai, Y.C. (2013). Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Annals of Microbiology, 63, 1099–1108. https://doi.org/10.1007/s13213-012-0567-8
  • Sriplai, N., & Pinitsoontorn, S. (2021). Bacterial cellulose-based magnetic nanocomposites–A review. Carbohydrate Polymers, 254, 117228. https://doi.org/10.1016/j.carbpol.2020.117228
  • Sukphan, S., Buapho, P., Laingaumnuay, N., & Jaturapiree, P. (2023). Bacterial cellulose: An eco-friendly low cost biomaterial for dye removal. IOP Conference Series: Materials Science and Engineering, 1280, 012008. http://doi.org/10.1088/1757-899X/1280/1/012008
  • Ul-Islam, M., Khan, T., & Park, J.K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. https://doi.org/10.1016/j.carbpol.2012.01.006
  • Unlu, F., Boran, F., Yesilada O., & Koytepe, S. (2023). Laccase immobilization on bacterial cellulose produced in a mulberry pomace waste extract medium: Characterization and use for dye decolorization. Journal of Applied Polymer Science, 140, e53952. https://doi.org/10.1002/app.53952
  • Yao, W., Wu, X., Zhu, J., Sun, B., Zhang, Y.Y., & Miller, C. (2011). Bacterial cellulose membrane – A new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 46(10), 2054-2058. https://doi.org/10.1016/j.procbio.2011.07.006
  • Yesilada, O. (1995). Short communication: Decolourization of crystal violet by fungi. World Journal of Microbiology and Biotechnology, 11, 601-602. Yesilada, O., Cing, S., & Asma, D. (2002). Decolourisation of the textile dye Astrazon Red FBL by Funalia trogii pellets. Bioresource Technology, 81(2), 155-157. https://doi.org/10.1016/S0960-8524(01)00117-1
  • Yesilada, O., Asma, D., & Cing, S. (2003). Decolorization of textile dyes by fungal pellets. Process Biochemistry, 38(6), 933-938. https://doi.org/10.1016/S0032-9592(02)00197-8
  • Yesilada, O., Yildirim, S.C., Birhanli, E., Apohan, E., Asma, D., & Kuru, F. (2010). The evaluation of pre-grown mycelial pellets in decolorization of textile dyes during repeated batch process. World Journal of Microbiology and Biotechnology, 26, 33-39. https://doi.org/10.1007/s11274-009-0138-8
  • Zaharia, C., Suteu, D., Muresan, A., Muresan, R., & Popescu, A. (2009). Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Enviromental Engineering and Management Journal, 8(6), 1359-1369. http://doi.org/10.30638/eemj.2009.199

Gluconacetobacter xylinus ve Yeni İzole Edilmiş Trametes trogii'nin Boya Renk Giderimi Potansiyelinin Karşılaştırılması

Yıl 2025, Cilt: 9 Sayı: 2, 232 - 239, 18.12.2025
https://doi.org/10.31594/commagene.1681103

Öz

Bu çalışmada, Gluconacetobacter xylinus NRRL B759'un bakteriyel selüloz üretimi sırasında boya giderim yeteneği ve yeni izole edilmiş beyaz çürüklük fungus olan Trametes trogii'nin renk giderim etkinliği araştırılmıştır. Reaktif Mavi 171 boyası için en etkili sonuçlar hem statik hem de çalkalamalı koşullarda 30°C'de 6. günde elde edildi. Remazol Parlak Mavi R boyası için ise en iyi sonuçlar, 30°C'deki statik ve çalkalamalı koşullarda sırasıyla 10. gün ve 8. günde belirlendi. En önemlisi, biyosorpsiyonun bu bakterinin boya giderme aktivitesi için ana mekanizma olduğu gözlemlendi. Fungusun renk giderim yeteneği, kesikli ve tekrarlı kesikli süreçler altında araştırılmıştır. Kesikli süreçte en etkili renk giderim değerleri, RB171 boyası için 8. günde %48, RBBR boyası için ise 6. günde %83'tür. Peletlerin renk giderim aktivitesi, hem saf su hem de Sabouraud Dekstroz Broth (SDB) ortamında tekrarlı kesikli süreçte test edilmiştir. Saf su ortamında, her iki boya için de SDB ortamına kıyasla daha düşük renk giderim değerleri elde edilmiştir. SDB ortamında, RB171 için renk giderim değerleri 1. döngüde %70 ve 5. döngüde %19'dur. RBBR boyası renk giderim değerleri 1. döngüde %57 iken, bu değer 5. döngüde %74’e ulaşılmıştır. Peletlerin renk giderim mekanizması esas olarak mikrobiyal metabolizmanın bir sonucudur.

Kaynakça

  • Akoglu, A., Karahan, A.G., Cakmakci, M.L., & Cakir, I. (2010). Bakteriyel selülozun özellikleri ve gıda sanayide kullanımı. The Journal of Food, 35(2), 127-134.
  • Anbia, M., Hariri, S., & Ashrafizadeh, S.N. (2010). Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3. Applied Surface Sience, 256(10), 3228-3233, https://doi.org/10.1016/j.apsusc.2009.12.010
  • Apohan, E., & Yesilada, O. (2005). Role of white rot fungus Funalia trogii in detoxification of textile dyes. Journal of Basic Microbiology, 45(2), 99- 105. https://doi.org/10.1002/jobm.200410463
  • Azeredo, H.M.C., Barud, H., Farinas, C.S., Vasconcellos, V.M., & Claro, A.M. (2019) Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3-7. https://doi.org/10.3389/fsufs.2019.00007
  • Betlej, I., Zakaria, S., Krajewski, K.J., & Boruszewski, P. (2021). Bacterial cellulose -properties and its potential application. Sains Malaysiana, 50(2), 493- 505. https://doi.org/10.3389/fsufs.2019.00007
  • Birben, M. (2019). Microbial selülozun boya gideriminde kullanımının araştırılması. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Birhanli, E., & Yesilada, O. (2010). Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochemical Engineering Journal, 52(1), 33-37. https://doi.org/10.1016/j.bej.2010.06.019
  • Birhanli, E., Erdogan, S., Yesilada, O., & Onal, Y. (2013). Laccase production by newly isolated white rot fungus Funalia trogii: Effect of immobilization matrix on laccase production. Biochemical Engineering Journal, 71, 134–139. https://doi.org/10.1016/j.bej.2012.12.002
  • Boran, F. (2022). Dye removing with dry and wet forms of pure bacterial cellulose produced by Gluconacetobacter xylinus. Commagene Journal of Biology, 6(1), 1-5. https://doi.org/10.31594/commagene.1037538
  • Collivignarelli, M.C., Abba, A., Miino, M.C., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727-745. https://doi.org/10.1016/j.jenvman.2018.11.094
  • Dashti, M.G., Abdeshahian, P., Yusoff, W.M.W., Kalil, M.S., & Hamid, A.A. (2014). Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid by Cunninghamella bainieri 2A1. Hindawi Publishing Corporation BioMed Research International, 2014(1), 831783. https://doi.org/10.1155/2014/831783
  • Deshpande, P., Wankar, S., Mahajan, S., Patil, Y., Rajwade, J. & Kulkarni, A. (2023). Bacterial cellulose: Natural biomaterial for medical and environmental applications. Journal of Natural Fibers, 20(2), 2218623. https://doi.org/10.1080/15440478.2023.2218623
  • Dogan, E.E., Yesilada, E., Ozata, L., & Yologlu, S. (2005). Genotoxicity testing of four textile dyes in two crosses of Drosophila using wing somatic mutation and recombination test. Drug and Chemical Toxicology, 28(3), 289-301. https://doi.org/10.1081/DCT-200064473
  • Dogan, N.M., Top, B., Bozbeyoglu, N.N., Bulut, D.T., Karabulut, O., & Uguzdogan, E. (2024). Production and characterization of bacterial cellulose from Komagataeibacter xylinus S4 strain. Pamukkale University Journal of Engineering Sciences, 30(2), 271-281. https://doi.org/10.5505/pajes.2023.25256
  • Esa, F., Tasirin, S.M., & Rahman, N.A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. Journal of Biotechnology, 101(1), 49-56. https://doi.org/10.1016/S0168-1656(02)00302-4
  • Grassi, E., Scodeller, P., Filiel, N., Carballo, R., & Levin, L. (2011). Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. International Biodeterioration & Biodegradation, 65(4), 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007
  • Gul, U.D. (2018). Bioremediation of dyes in textile wastewater. Turkish Journal of Scientific Reviews, 11(2), 24-28
  • Hadibarata, T., Adnan, L. A., Yusoff, A.R.M., Rubiyatno, A.Y., Zubir, M.M.F.A., Khudhair, A. B., Teh, Z. C., & Naser M. A. (2013). Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, Soil, Pollution, 224, 1595. https://doi.org/10.1007/s11270-013-1595-0
  • Herath, I.S., Udayanga, D., Jayasanka, D.J., & Hawewasam, C. (2024). Textile dye decolorization by white rot fungi–A review. Bioresource Technology Reports, 25, 101687. https://doi.org/10.1016/j.biteb.2023.101687
  • Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26, 2895-2911. https://doi.org/10.1007/s10570-019-02307-1
  • Kahraman, S., & Yeşilada, O. (2003). Decolorization and bioremeditation of molasses wastewater by white-rot fungi in a semi-solid-state condition. Folia Microbiologica, 48, 525-528. https://doi.org/10.1007/BF02931335
  • Khan, H., Kadam, A., & Dutt, D. (2020). Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydrate Polymers, 229, 115513. https://doi.org/10.1016/j.carbpol.2019.115513
  • Knapp, J.S., Zhang, F.M., & Tapley, K.N. (1997). Decolourisation of Orange II by a wood-rotting fungus. Journal of Chemical Technology Biotechnology, 69(3), 289-296. https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<289::AID-JCTB702>3.0.CO;2-H
  • Lalnunhlimi, S., & Krishnaswamy, V. (2016). Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of Microbiology, 47, 39-46. https://doi.org/10.1016/j.bjm.2015.11.013
  • Leal, A.N.R., Lima, A.C.A., Azevedo, M.G.F.A., Santos, D.K.D.N., Zadian, L.E.M.C., Lima, V.F., & Filho, I.J.C. (2021). Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Scienta Plena, 17, 034201. https://doi.org/10.14808/sci.plena.2021.034201
  • Mbituyimana, B., Liu, L., Ye, W., Boni, B.O.O., Zhang, K., Chen, J., Thomas, S., Vasilievich, V.R., Shi, Z., & Yang, G. (2021). Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydrate Polymers, 273, 118565. https://doi.org/10.1016/j.carbpol.2021.118565
  • Mohite, B.V., & Patil, S.V. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101-110. https://doi.org/10.1002/bab.1148
  • Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. https://doi.org/10.1016/j.eurpolymj.2019.109365
  • Pavithra, K.G., Kumar, P.S., Jaikumar, V., & Rajan, P.S. (2019). Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75, 1-19. https://doi.org/10.1016/j.jiec.2019.02.011
  • Ramasany, R., Ahmed, H.A.M., & Karthik, S.S. (2012). Development of microbial consortium for the biodegradation and biodecolorization of textile effluents. Journal of Urban and Enviromental Engineering, 6(1), 36-41. https://doi.org/10.4090/juee.2012.v6n1.036041
  • Rangaswamy, B.E., Vanitha, K.P., & Hungun, B.S. (2015). Microbial cellulose production from bacteria isolated from rotten fruit. International Journal of Polymer Science, 280784, 1-8. https://doi.org/10.1155/2015/280784
  • Sam, M., & Yesilada, O. (2001). Decolorization of Orange II dye by white-rot fungi. Folia Microbiologica, 46, 143-145. https://doi.org/10.1007/BF02873593
  • Shi, Z., Zhang, Y., Phillips, G.O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012
  • Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10, 1-8. https://doi.org/10.1007/BF02931175
  • Si, J., Cui, B.K., & Dai, Y.C. (2013). Decolorization of chemically different dyes by white-rot fungi in submerged cultures. Annals of Microbiology, 63, 1099–1108. https://doi.org/10.1007/s13213-012-0567-8
  • Sriplai, N., & Pinitsoontorn, S. (2021). Bacterial cellulose-based magnetic nanocomposites–A review. Carbohydrate Polymers, 254, 117228. https://doi.org/10.1016/j.carbpol.2020.117228
  • Sukphan, S., Buapho, P., Laingaumnuay, N., & Jaturapiree, P. (2023). Bacterial cellulose: An eco-friendly low cost biomaterial for dye removal. IOP Conference Series: Materials Science and Engineering, 1280, 012008. http://doi.org/10.1088/1757-899X/1280/1/012008
  • Ul-Islam, M., Khan, T., & Park, J.K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. https://doi.org/10.1016/j.carbpol.2012.01.006
  • Unlu, F., Boran, F., Yesilada O., & Koytepe, S. (2023). Laccase immobilization on bacterial cellulose produced in a mulberry pomace waste extract medium: Characterization and use for dye decolorization. Journal of Applied Polymer Science, 140, e53952. https://doi.org/10.1002/app.53952
  • Yao, W., Wu, X., Zhu, J., Sun, B., Zhang, Y.Y., & Miller, C. (2011). Bacterial cellulose membrane – A new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 46(10), 2054-2058. https://doi.org/10.1016/j.procbio.2011.07.006
  • Yesilada, O. (1995). Short communication: Decolourization of crystal violet by fungi. World Journal of Microbiology and Biotechnology, 11, 601-602. Yesilada, O., Cing, S., & Asma, D. (2002). Decolourisation of the textile dye Astrazon Red FBL by Funalia trogii pellets. Bioresource Technology, 81(2), 155-157. https://doi.org/10.1016/S0960-8524(01)00117-1
  • Yesilada, O., Asma, D., & Cing, S. (2003). Decolorization of textile dyes by fungal pellets. Process Biochemistry, 38(6), 933-938. https://doi.org/10.1016/S0032-9592(02)00197-8
  • Yesilada, O., Yildirim, S.C., Birhanli, E., Apohan, E., Asma, D., & Kuru, F. (2010). The evaluation of pre-grown mycelial pellets in decolorization of textile dyes during repeated batch process. World Journal of Microbiology and Biotechnology, 26, 33-39. https://doi.org/10.1007/s11274-009-0138-8
  • Zaharia, C., Suteu, D., Muresan, A., Muresan, R., & Popescu, A. (2009). Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Enviromental Engineering and Management Journal, 8(6), 1359-1369. http://doi.org/10.30638/eemj.2009.199
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoişlem, Biyoüretim ve Biyoürünler
Bölüm Araştırma Makalesi
Yazarlar

Müge Yalçın 0009-0008-3423-6667

Filiz Boran 0000-0002-8801-7987

Özfer Yeşilada 0000-0003-0038-6575

Gönderilme Tarihi 21 Nisan 2025
Kabul Tarihi 17 Eylül 2025
Yayımlanma Tarihi 18 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Yalçın, M., Boran, F., & Yeşilada, Ö. (2025). Comparison of Dye Decolorization Potential of Gluconacetobacter xylinus and Newly Isolated Trametes trogii. Commagene Journal of Biology, 9(2), 232-239. https://doi.org/10.31594/commagene.1681103
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.