Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Different Life Stages of Total, Phospholipid and Triacylglycerol Fatty Acids of Lucilia sericata

Yıl 2021, , 78 - 83, 30.06.2021
https://doi.org/10.31594/commagene.909893

Öz

Lucilia sericata, which belongs to the Calliphoridae family (Diptera), is used as a debridement tool in open necrotic wounds that do not respond to conventional treatments. Knowing the total, phospholipid (PL), and triacylglycerol (TAG) fatty acid content of L. sericata fly, which is important for health, in its different stages is important both in terms of taxonomy and physiology. After L. sericata samples used in the study were obtained commercially, they were bred under laboratory conditions and then the fatty acids in different stages were analyzed by gas chromatography. Sixteen fatty acids are determined as a result of the analysis. When individual fatty acids are considered, Palmitic acid (16:0), Palmitoleic Acid (16:1n-7), oleic acid (18:1n-9) and Linoleic Acid (18:2n-6) were found to be major ones, while the others are detected in trace amounts. It is determined that, out of total, PL and TAG, saturated fatty acids (SFA) are found at a high percentage in the eggs, monounsaturated fatty acids (MUFA) are the highest in the larvae, and polyunsaturated fatty acids (PUFA) are the highest in fly and pupa. Furthermore, out of total, PL and TAG, ∑PUFA is at a low percentage in the egg and the larval stages. Different results are found at different stages in this study. This may be because fatty acid percentages that change during metamorphosis meet different physiological needs at different phases.

Kaynakça

  • Aktümsek, A., Nurullahoglu, Z.Ü., & Kalyoncu, L. (2000). Fatty Acid Composition of Galleria mellonella (L.) (Lepidoptera : Pyralidae) Larvae and Pupae Selcuk University Journal of Science, 17, 29-32.
  • Ali, I., & Steele, J.E. (1997). Evidence that free fatty acids in trophocytes of Periplaneta americana fat body may be regulated by the activity of phospholipase A2 and cyclooxygenase. Insect Biochem Molecular and Biology, 27(7), 681-692. https://doi.org/10.1016/s0965-1748(97)00046-5
  • Başhan, M. (1996). Effect of various diets on the total lipid compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20, 376-379.
  • Beenakkers, A., M.Th. Van der Horst, D.J., & Van Marrewijk, W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research, 24(1), 19-67. https://doi.org/10.1016/0163-7827(85)90007-4
  • Bolaban, D. (2009). Lucilia sericata Larvalari ve Salgilarinin Metisiline Dirençli Staphylococcus Aureus (Mrsa) ve Metisiline Duyarli Staphylococcus Aureus (Mssa) Üzerine Antibakteriyel Etkilerinin İn-Vivo ve İn-Vitro Koşullarda Araştırılması. (236201), Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Bozkus, K. (2003). Phospholipid and Triacylglycerol Fatty Acid Compositions from Various Development Stages of Melanogryllus Desertus Pall. (Orthoptera: Gryllidae). Turkish Journal of Biology, (27), 73-78.
  • Britland, S., Smith, A., Finter, W., Eagland, D., Vowden, K., Vowden, P., Pritchard, D. (2011). Recombinant Lucilia sericata chymotrypsin in a topical hydrogel formulation degrades human wound eschar ex vivo. Biotechnology Progress, 27(3), 870-874. https://doi.org/10.1002/btpr.587
  • Cakmak, Ö., Bashan, M., & Satar, A. (2004). Fatty acid content of larvae and adult individuals of Myrmeleon inconspicuus (Neuroptera, Myrmeleonidae). Paper presented at the XVII. National Biology Congress, Adana, Turkey.
  • Crippsc, C., & De Renobales, M. (1988). Developmental changes in fatty acid biosynthesis and composition in the house cricket, Acheta domesticus. Archives of Insect Biochemistry and Physiology, 9(4), 357-366. https://doi.org/10.1002/arch.940090409
  • Dadd, R.H. (1973). Insect nutrition: current developments and metabolic implications. Annual Review of Entomology, 18, 381-420. https://doi.org/10.1146/annurev.en.18.010173.002121
  • Downer, R.G.H., & Matthews, J.R. (1976). Patterns of Lipid Distribution and Utilisation in Insects. American Zoologist, 16(4), 733-745. https://doi.org/10.1093/icb/16.4.733
  • Folch, J., Lees, M., & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509.
  • Gilbert, L.I. (1967). Lipid Metabolism and Function in Insects. In J.W.L. Beament, J.E. Treherne, & V.B. Wigglesworth (Eds.), Advances in Insect Physiology (Vol. 4, pp. 69-211): Academic Press.
  • Gołębiowski, M., Boguś, M.I., Paszkiewicz, M., Wieloch, W., Włóka, E., & Stepnowski, P. (2012). The Composition of the Cuticular and Internal Free Fatty Acids and Alcohols from Lucilia sericata Males and Females. Lipids, 47(6), 613-622. https://doi.org/10.1007/s11745-012-3662-5
  • Gołębiowski, M., Sosnowska, A., Puzyn, T., Boguś, M.I., Wieloch, W., Włóka, E., & Stepnowski, P. (2014). Application of two-way hierarchical cluster analysis for the identification of similarities between the individual lipid fractions of Lucilia sericata. Chemistry and Biodiversity, 11(5), 733-748. https://doi.org/10.1002/cbdv.201300294
  • Hoback, W.W., Rana, R.L., & Stanley, D.W. (1999). Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 122(3), 355-362. https://doi.org/10.1016/S1095-6433(99)00018-5
  • Hodges, J.D., & Barras, S.J. (1974). Fatty-Acid Composition of Dendroctonus frontalis at Various Developmental Stages1. Annals of the Entomological Society of America, 67(1), 51-54. https://doi.org/10.1093/aesa/67.1.51
  • Horobin, A.J., Shakesheff, K.M., Woodrow, S., Robinson, C., & Pritchard, D.I. (2003). Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon interactions between human dermal fibroblasts and extracellular matrix components. British Journal of Dermatology, 148(5), 923-933. https://doi.org/10.1046/j.1365-2133.2003.05314.x
  • Jacob, J., & Hanssen, H.-P. (1979). The Chemical Composition of Cuticular Lipids from Dragonflies (Odonata). Verlag der Zeitschrift für Naturforschung, 34(7-8), 498-502. https://doi.org/10.1515/znc-1979-7-802
  • Janda, V. (1975). Synthesis and utilization of tissue proteins and lipids during the larval-pupal transformation of Galleria mellonella. Acta Entomologica Bohemoslovaca, 72, 227-231.
  • Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., & Blomquist, G.J. (1988). De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 963(1), 21-27. https://doi.org/10.1016/0005-2760(88)90333-5
  • Kalyoncu, L., & Ozge, S. (2014). Fatty Acid Composition of Different Developmental Stages of Plodia Interpunctella (Hubner) (Lepidoptera:Pyralidae). Selcuk University Journal of Science, 38, 10-18.
  • Keeley, L.L., Park, J.H., Lu, K.H., & Bradfield, J.Y. (1996). Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: Hypertrehalosemic hormone as a model. 33(3-4), 283-301. https://doi.org/10.1002/(SICI)1520-6327(1996)33:3/4
  • Lunas, B.M., de Paula, M.C., Michelutti, K.B., Lima-Junior, S.E., Antonialli-Junior, W.F., & Cardoso, C.A.L. (2019). Hydrocarbon and Fatty Acid Composition from Blowfly Eggs Represents a Potential Complementary Taxonomic Tool of Forensic Importance. Journal of Forensic Sciences, 64(6), 1720-1725. https://doi.org/10.1111/1556-4029.14119
  • Madariaga, M.A., Mata, F., Municio, A.M., & Ribera, A. (1974). Changes in the fatty acid patterns of glycerolipids of Dacus oleae during metamorphosis and development. Insect Biochemistry, 4(2), 151-160. https://doi.org/10.1016/0020-1790(74)90003-1
  • Nor Aliza, A.R., Bedick, J.C., Rana, R.L., Tunaz, H., Hoback, W.W., & Stanley, D.W. (2001). Arachidonic and eicosapentaenoic acids in tissues of the firefly, Photinus pyralis (Insecta: Coleoptera). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(2), 251-257. https://doi.org/10.1016/S1095-6433(00)00300-7
  • Nurullahoglu, Z.Ü. (2003). Fatty Acid Composition of Achroia grisella (Lepidoptera:Pyralidae) Larvae and Pupae. Selcuk University Journal of Science, 21, 75-78.
  • Ogg, C.L., & Stanley-Samuelson, D.W. (1992). Phospholipid and triacylglycerol fatty acid compositions of the major life stages and selected tissues of the tobacco hornworm Manduca sexta. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(3), 345-351. https://doi.org/10.1016/0305-0491(92)90011-F
  • Pagani, R., Suarez, A., & Municio, A.M. (1980). Fatty acid patterns of the major lipid classes during development of Ceratitis capitata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 67(4), 511-518. https://doi.org/10.1016/0305-0491(80)90408-3
  • Paul, A., Frederich, M., Megido, R.C., Alabi, T., Malik, P., Uyttenbroeck, R., Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001
  • Seven, S.E. (2004). Total lipid, total fatty acid and fatty acid composition of Plodia interpunctella(Lepidoptera:Pyralidae) larvae and pupae. (Master Master Thesis), (154034) Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J., & de Renobales, M. (1988). Fatty acids in insects: Composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9(1), 1-33. https://doi.org/10.1002/arch.940090102
  • Stanley, D.W., & Miller, J.S. (1998). Eicosanoids in animal reproduction what can we learn from invertebrates? In A. F. Rowley, H. Kühn, & T. Schewe (Eds.), Eicosanoids and Related Compounds in Plants and Animals (pp. 183-196): Princeton University Press.
  • Sushchik, N.N., Yurchenko, Y.A., Gladyshev, M.I., Belevich, O.E., Kalachova, G.S., & Kolmakova, A.A. (2013). Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect Science, 20(5), 585-600. https://doi.org/10.1111/j.1744-7917.2012.01582.x
  • Taşkın, D., & Aksoylar, M. (2010). Fatty acid composition of larvae and pupae of Tenebrio molitor L. (Coleoptera: Tenebrionidae). Mehmet Akif Ersoy University, Journal of the Institute of Science, 1(2), 66-72.
  • Thompson, S.N. (1973). A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 45(2), 467-482. https://doi.org/10.1016/0305-0491(73)90078-3
  • Wakayama, E.J., Dillwith, J.E., & Blomquist, G.J. (1980). In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist Abstract, 1010.
  • Zhang, Z., Wang, S., Diao, Y., Zhang, J., & Lv, D. (2010). Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity. Lipids in Health and Disease, 9(1), 24. https://doi.org/10.1186/1476-511X-9-24

Lucilia sericata’nın Total, Fosfolipid ve Triaçilgliserol Yağ Asitlerinin Farklı Yaşam Evrelerinin Karşılaştırılması

Yıl 2021, , 78 - 83, 30.06.2021
https://doi.org/10.31594/commagene.909893

Öz

Calliphoridae ailesindeki (Diptera) olan Lucilia sericata, geleneksel tedavilere yanıt veremeyen açık nekrotik yaralarda debridman aracı olarak kullanılmaktadır. Sağlık açısından önemli olan L. sericata sineğine ait farklı evrelerindeki total, fosfolipit (PL) ve triaçilgliserol (TAG) yağ asit içeriğinin bilinmesi hem taksonomik hem de fizyolojisi açılardan önem taşımaktadır. Çalışmada kullanılan L. sericata örnekleri ticari olarak temin edildikten ve laboratuvar koşullarında üremesi sağlandıktan sonra farklı evrelerindeki yağ asitleri gaz kromatografisi ile analizleri yapılmıştır. Yapılan analiz sonucunda 16 yağ asidi belirlenmiştir. Bireysel yağ asitleri incelendiğinde Palmitik asit (16:0), Palmitoleik Asit (16:1n-7), oleik asit (18:1n-9) ve Linoleik Asit (18:2n-6) majör yağ asitleri olarak belirlenmiştir. Diğerleri eser miktarda tespit edilmiştir. Total, PL ve TAG’de doymuş yağ asitleri (SFA) yumurtada; Tekli Doymamış Yağ Asitleri (MUFA) larvada, Çoklu doymamış yağ asitleri (PUFA) sinek ve pupada yüksek yüzdede olduğu belirlenmiştir. Ayrıca total, PL ve TAG’de yumurta ve larva evresinde ∑PUFA’nın düşük yüzdede olduğu görülmüştür. Çalışmamızda farklı evrelerde farklı sonuçlar tespit edilmiştir. Bunun nedeni metamorfoz süresince değişen yağ asidi yüzdelerinin farklı evrelerindeki farklı fizyolojik ihtiyaçlarının karşılanması şeklinde açıklanabilir.

Kaynakça

  • Aktümsek, A., Nurullahoglu, Z.Ü., & Kalyoncu, L. (2000). Fatty Acid Composition of Galleria mellonella (L.) (Lepidoptera : Pyralidae) Larvae and Pupae Selcuk University Journal of Science, 17, 29-32.
  • Ali, I., & Steele, J.E. (1997). Evidence that free fatty acids in trophocytes of Periplaneta americana fat body may be regulated by the activity of phospholipase A2 and cyclooxygenase. Insect Biochem Molecular and Biology, 27(7), 681-692. https://doi.org/10.1016/s0965-1748(97)00046-5
  • Başhan, M. (1996). Effect of various diets on the total lipid compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20, 376-379.
  • Beenakkers, A., M.Th. Van der Horst, D.J., & Van Marrewijk, W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research, 24(1), 19-67. https://doi.org/10.1016/0163-7827(85)90007-4
  • Bolaban, D. (2009). Lucilia sericata Larvalari ve Salgilarinin Metisiline Dirençli Staphylococcus Aureus (Mrsa) ve Metisiline Duyarli Staphylococcus Aureus (Mssa) Üzerine Antibakteriyel Etkilerinin İn-Vivo ve İn-Vitro Koşullarda Araştırılması. (236201), Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Bozkus, K. (2003). Phospholipid and Triacylglycerol Fatty Acid Compositions from Various Development Stages of Melanogryllus Desertus Pall. (Orthoptera: Gryllidae). Turkish Journal of Biology, (27), 73-78.
  • Britland, S., Smith, A., Finter, W., Eagland, D., Vowden, K., Vowden, P., Pritchard, D. (2011). Recombinant Lucilia sericata chymotrypsin in a topical hydrogel formulation degrades human wound eschar ex vivo. Biotechnology Progress, 27(3), 870-874. https://doi.org/10.1002/btpr.587
  • Cakmak, Ö., Bashan, M., & Satar, A. (2004). Fatty acid content of larvae and adult individuals of Myrmeleon inconspicuus (Neuroptera, Myrmeleonidae). Paper presented at the XVII. National Biology Congress, Adana, Turkey.
  • Crippsc, C., & De Renobales, M. (1988). Developmental changes in fatty acid biosynthesis and composition in the house cricket, Acheta domesticus. Archives of Insect Biochemistry and Physiology, 9(4), 357-366. https://doi.org/10.1002/arch.940090409
  • Dadd, R.H. (1973). Insect nutrition: current developments and metabolic implications. Annual Review of Entomology, 18, 381-420. https://doi.org/10.1146/annurev.en.18.010173.002121
  • Downer, R.G.H., & Matthews, J.R. (1976). Patterns of Lipid Distribution and Utilisation in Insects. American Zoologist, 16(4), 733-745. https://doi.org/10.1093/icb/16.4.733
  • Folch, J., Lees, M., & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509.
  • Gilbert, L.I. (1967). Lipid Metabolism and Function in Insects. In J.W.L. Beament, J.E. Treherne, & V.B. Wigglesworth (Eds.), Advances in Insect Physiology (Vol. 4, pp. 69-211): Academic Press.
  • Gołębiowski, M., Boguś, M.I., Paszkiewicz, M., Wieloch, W., Włóka, E., & Stepnowski, P. (2012). The Composition of the Cuticular and Internal Free Fatty Acids and Alcohols from Lucilia sericata Males and Females. Lipids, 47(6), 613-622. https://doi.org/10.1007/s11745-012-3662-5
  • Gołębiowski, M., Sosnowska, A., Puzyn, T., Boguś, M.I., Wieloch, W., Włóka, E., & Stepnowski, P. (2014). Application of two-way hierarchical cluster analysis for the identification of similarities between the individual lipid fractions of Lucilia sericata. Chemistry and Biodiversity, 11(5), 733-748. https://doi.org/10.1002/cbdv.201300294
  • Hoback, W.W., Rana, R.L., & Stanley, D.W. (1999). Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 122(3), 355-362. https://doi.org/10.1016/S1095-6433(99)00018-5
  • Hodges, J.D., & Barras, S.J. (1974). Fatty-Acid Composition of Dendroctonus frontalis at Various Developmental Stages1. Annals of the Entomological Society of America, 67(1), 51-54. https://doi.org/10.1093/aesa/67.1.51
  • Horobin, A.J., Shakesheff, K.M., Woodrow, S., Robinson, C., & Pritchard, D.I. (2003). Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon interactions between human dermal fibroblasts and extracellular matrix components. British Journal of Dermatology, 148(5), 923-933. https://doi.org/10.1046/j.1365-2133.2003.05314.x
  • Jacob, J., & Hanssen, H.-P. (1979). The Chemical Composition of Cuticular Lipids from Dragonflies (Odonata). Verlag der Zeitschrift für Naturforschung, 34(7-8), 498-502. https://doi.org/10.1515/znc-1979-7-802
  • Janda, V. (1975). Synthesis and utilization of tissue proteins and lipids during the larval-pupal transformation of Galleria mellonella. Acta Entomologica Bohemoslovaca, 72, 227-231.
  • Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., & Blomquist, G.J. (1988). De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 963(1), 21-27. https://doi.org/10.1016/0005-2760(88)90333-5
  • Kalyoncu, L., & Ozge, S. (2014). Fatty Acid Composition of Different Developmental Stages of Plodia Interpunctella (Hubner) (Lepidoptera:Pyralidae). Selcuk University Journal of Science, 38, 10-18.
  • Keeley, L.L., Park, J.H., Lu, K.H., & Bradfield, J.Y. (1996). Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: Hypertrehalosemic hormone as a model. 33(3-4), 283-301. https://doi.org/10.1002/(SICI)1520-6327(1996)33:3/4
  • Lunas, B.M., de Paula, M.C., Michelutti, K.B., Lima-Junior, S.E., Antonialli-Junior, W.F., & Cardoso, C.A.L. (2019). Hydrocarbon and Fatty Acid Composition from Blowfly Eggs Represents a Potential Complementary Taxonomic Tool of Forensic Importance. Journal of Forensic Sciences, 64(6), 1720-1725. https://doi.org/10.1111/1556-4029.14119
  • Madariaga, M.A., Mata, F., Municio, A.M., & Ribera, A. (1974). Changes in the fatty acid patterns of glycerolipids of Dacus oleae during metamorphosis and development. Insect Biochemistry, 4(2), 151-160. https://doi.org/10.1016/0020-1790(74)90003-1
  • Nor Aliza, A.R., Bedick, J.C., Rana, R.L., Tunaz, H., Hoback, W.W., & Stanley, D.W. (2001). Arachidonic and eicosapentaenoic acids in tissues of the firefly, Photinus pyralis (Insecta: Coleoptera). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(2), 251-257. https://doi.org/10.1016/S1095-6433(00)00300-7
  • Nurullahoglu, Z.Ü. (2003). Fatty Acid Composition of Achroia grisella (Lepidoptera:Pyralidae) Larvae and Pupae. Selcuk University Journal of Science, 21, 75-78.
  • Ogg, C.L., & Stanley-Samuelson, D.W. (1992). Phospholipid and triacylglycerol fatty acid compositions of the major life stages and selected tissues of the tobacco hornworm Manduca sexta. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 101(3), 345-351. https://doi.org/10.1016/0305-0491(92)90011-F
  • Pagani, R., Suarez, A., & Municio, A.M. (1980). Fatty acid patterns of the major lipid classes during development of Ceratitis capitata. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 67(4), 511-518. https://doi.org/10.1016/0305-0491(80)90408-3
  • Paul, A., Frederich, M., Megido, R.C., Alabi, T., Malik, P., Uyttenbroeck, R., Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340. https://doi.org/10.1016/j.aspen.2017.02.001
  • Seven, S.E. (2004). Total lipid, total fatty acid and fatty acid composition of Plodia interpunctella(Lepidoptera:Pyralidae) larvae and pupae. (Master Master Thesis), (154034) Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J., & de Renobales, M. (1988). Fatty acids in insects: Composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9(1), 1-33. https://doi.org/10.1002/arch.940090102
  • Stanley, D.W., & Miller, J.S. (1998). Eicosanoids in animal reproduction what can we learn from invertebrates? In A. F. Rowley, H. Kühn, & T. Schewe (Eds.), Eicosanoids and Related Compounds in Plants and Animals (pp. 183-196): Princeton University Press.
  • Sushchik, N.N., Yurchenko, Y.A., Gladyshev, M.I., Belevich, O.E., Kalachova, G.S., & Kolmakova, A.A. (2013). Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region. Insect Science, 20(5), 585-600. https://doi.org/10.1111/j.1744-7917.2012.01582.x
  • Taşkın, D., & Aksoylar, M. (2010). Fatty acid composition of larvae and pupae of Tenebrio molitor L. (Coleoptera: Tenebrionidae). Mehmet Akif Ersoy University, Journal of the Institute of Science, 1(2), 66-72.
  • Thompson, S.N. (1973). A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 45(2), 467-482. https://doi.org/10.1016/0305-0491(73)90078-3
  • Wakayama, E.J., Dillwith, J.E., & Blomquist, G.J. (1980). In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist Abstract, 1010.
  • Zhang, Z., Wang, S., Diao, Y., Zhang, J., & Lv, D. (2010). Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity. Lipids in Health and Disease, 9(1), 24. https://doi.org/10.1186/1476-511X-9-24
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Veysi Kızmaz 0000-0002-7864-5912

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 5 Nisan 2021
Kabul Tarihi 25 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kızmaz, V. (2021). Comparison of Different Life Stages of Total, Phospholipid and Triacylglycerol Fatty Acids of Lucilia sericata. Commagene Journal of Biology, 5(1), 78-83. https://doi.org/10.31594/commagene.909893
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.