Araştırma Makalesi
BibTex RIS Kaynak Göster

Agricultural Greenhouse Gas Emissions – Economic Growth Relationship in Türkiye: Are Agricultural Farmgate Emissions a Major Factor?

Yıl 2025, Cilt: 13 Sayı: 2, 390 - 407, 24.12.2025
https://doi.org/10.33202/comuagri.1724967

Öz

Although the agricultural sector in Türkiye has met/is meeting various criteria during its accession process to the EU, it has not yet formulated a strategy for mitigating or adapt-ing to climate change, particularly in reducing greenhouse gas emissions, which con-tribute to climate change. One of the significant reasons behind the farmer protests ob-served in the EU may be the perceived strict stance of EU leaders on combating climate change. This study examines the relationship between farmgate greenhouse gas (GHG) emissions and economic growth in Türkiye. Using Vector Autoregressive Model (VAR), the causal relationship between agricultural and non-agricultural emissions and GDP is explored in a country where agriculture remains a significant source of income. Accord-ing to the VAR results, although there is no statistical causality found between GDP, non-agricultural emissions, and farmgate emissions, it is suggested that Türkiye, which is following the path of emerging economies and the EU, needs to undertake measures both on the supply side and the demand side. The transition of rural residents in Türkiye to alter agricultural techniques that have been practiced for centuries for mitigation pur-poses may require time. The current findings of the paper do not dictate this. However, in a growing economy, transitioning to regional studies and demand-side mitigation policies for non-agricultural emissions can be implemented more readily. The process that began with supply-side mitigation efforts in countries like the EU, where farmers were structurally more prepared, could start with demand-side mitigation efforts in Tü-rkiye (such as dietary changes, measures in the processing industry, etc.). The wave of change observed in consumers and agricultural raw material processors could lead to-wards farmgate mitigation efforts.

Kaynakça

  • Akyüz, H.E., 2018. Statistical Analysis of Climatic Variables with Vector Autoregression Model (VAR). Int. J. Eng. Res. Dev. 10: 183–192.
  • Appiah, K., Du, J., Poku, J., 2018. Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution. 25: 24764-24777.
  • Baldock, D., Bartley, J., Framer, M., Hart, K., Lucchesi, V., Silcock, P., Zobbe, H., Pointereau, P., 2007. Evaluation of the environ-mental impacts of CAP (common agricultural policy) measures related to the beef and veal sector and the milk sector. Working Report of the Institute for European Environmental Policy for DG Agriculture, London.
  • Boyd, D., Pathak, M., Diemen, R., Skea, J., 2022. Mitigation co-benefits of climate change adaptation: A case-study analysis of eight cities. Sustainable Cities and Society. 77: 1-11.
  • Carbonbrief, 2024. Carbon Brief Clear on Climate Web Page. https://www.carbonbrief.org/analysis-how-do-the-eu-farmer-protests-relate-to-climate-change/ , (Accessed on 21 February 2024).
  • Chaabouni S., Saidi K., 2017. The dynamic links between carbon dioxide (CO2) emissions, health spending and GDP growth: a case study for 51 countries. Environmental Research. 158: 137–144.
  • Coderoni, S., Esposti, R., 2018a. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment. Science of the Total Environment. 627: 427-437.
  • Coderoni, S., Esposti, R., 2018b. CAP payments and agricultural GHG emissions in Italy: An analysis of farm-level data. Environmental Science & Policy. 83: 239–248.
  • EDF, 2021. EU Green Deal- Main Elements and Roadmap. Economic Development Foundation of Türkiye.
  • FAO, 2019. FAO Corporate Statistical Database. http://www.fao.org/faostat/en/#data/GT ,(Accessed on March 2024).
  • Garvey, A., Norman, J., Barrett, J. 2022. Reducing The UK’s Food Footprint: Demand-Side Action for More Palatable Food emissi-ons.’CREDS Policy Brief 020. Centre for Research into Energy Demand Solutions. Oxford, UK.
  • Garvey, A., Norman, J., Owen, A., Barrett, J., 2021. Towards net zero nutrition: the contribution of demand-side change to mitigating UK food emissions. Journal of Cleaner Production. 290:125672
  • Gujarati, D.N., 2004. Basic Econometrics, New York: McGraw-Hill.
  • Gurluk, S., 2009. Economic growth, industrial pollution and human development in the Mediterranean Region. Ecological Economics. 68(8-9): 2327-2335.
  • Gurluk, S., 2015. Assessing Agri-Environmental Management and Inorganic Fertilizer Consumption Using Environmental Indicators. Outlook on Agriculture. 44(2): 135-141
  • Gültekin, Ö.E., Hayat, E.A., 2016. Analysis of Factors Affecting The Gold Prices Through Var Model:2005-2015 Period. Ege Academik Review. 16(4): 611-625.
  • Haider, A., Arooj B,, Muhammad I.H., 2020. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Science of Total Environment. 741: 140421. https://doi.org/10.1016/j.scitotenv.2020.140421
  • Han, J., Du, T,, Zhang, C., Qian, X., 2018. Correlation analysis of CO2 emissions, material stocks and economic growth nexus: Evi-dence from Chinese provinces. Journal of Cleaner Production. 180: 395-406.
  • Harris, J. M., 2002. Environmental and Natural resources economics: A contemporary approach. Houghton Mifflin College Div; First Edition, USA.
  • IPCC, 2006. Intergovernmental panel on climate change guidelines for national greenhouse gas inventories volume 4: agriculture, forestry and other land use. ISBN: 4-88788-032-4, Japan.
  • Jarecki, M., Lal, R., 2003. Crop management for soil carbon sequestration. Critical Reviews in Plant Sciences. 22: 471-502.
  • Jiang, W., Yu, Q., 2023. Carbon emissions and economic growth in China: Based on mixed frequency VAR analysis. Renewable and Sustainable Energy Reviews. 183(3): 113500.
  • Johnson, J.M., Franzluebbers, A.J., Weyers, S.L., Reicosky, D,C., 2017.Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution. 150: 107-124.
  • Joseph, M., 2022. Modern Time Series Forecasting with Python: Explore Industry-Ready Time Series Forecasting Using Modern Machine Learning and Deep Learning; Packt Publishing: Birmingham, UK.
  • Klemedtsson, A. K., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., Oenema, O., 1997. Greenhouse gas emissions from farmed organic soils: A review. Soil Use and Management. 13: 245–250.
  • Kyriazil, A., Miro, J., 2023. Towards a socially fair green transition in the EU?An analysis of the Just Transition Fund using the Multiple Streams Framework. Comparative European Politics. 21: 112–132.
  • Lal, R., 2007. Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change. 12: 303-322.
  • Muhadinovic, M., Djurovic, G., Bojaj, M.M., 2021. Forecasting Greenhouse Gas Emissions and Sustainable Growth in Montenegro: a SVAR Approach. Polish Journal of Environmental Studies. 30: 4115-4129.
  • Nguyen, C.P., Le, T.H., Schinckus, C., Su, T.D., 2020. Determinants of agricultural emissions: panel data evidence from a global sample. Environment and Development Economics. 2: 109-130.
  • Niles, M.T., Ahuja, R., Barker, T., Esquivel, J., Gutterman, S., Heller, M.C., Mango, N., Portner, D., Raimond, R., Tirado, C., Vermeulen, S., 2017. Climate change mitigation beyond agriculture: a review of food system opportunities and implications. Renewable Agriculture and Food Systems. 33: 297 – 308.
  • Özçicek, Ö., McMillin, D., 1999. Lag Length Selection in Vector Autoregressive Models: Symmetric and Asymmetric Lags. Appl. Econ., 31: 517–524.
  • Poore, J., Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science. 360: 987–92.
  • Prosperi, P., Bloise, M., Tubiello, F.N., Conchedda, G., Rossi, S., Boschetti, L., Salvatore, M., Bernoux, M., 2020. New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Climate Change. 161: 415–32.
  • Ravani, M., Georgiou, K., Tselempi, S., Monokrousos, N., Ntinas, G.K., 2024. Carbon Footprint of Greenhouse Production in EU—How Close Are We to Green Deal Goals? Sustainability. 16(1): 191. https://doi.org/10.3390/su16010191.
  • Rosenzweig, C., Mbow, C., Barioni, L.G., 2020. Climate change responses benefit from a global food system approach. Nature Food. 1: 94–7.
  • Saidi, K., Hammami S., 2015. The impact of energy consumption and CO2 emissions on economic growth: fresh evidence from dynamic simultaneous-equations models. Sustain Cities Soc., 14: 178–186.
  • Sarpong, K.A., Xu, W., Gyamfi, B.A., Ofori, E.K., 2023. Can environmental taxes and green‐energy offer carbon‐free E7 economies? An empirical analysis in the framework of COP‐26. Environmental Science and Pollution Research. 30: 51726–51739.
  • Sciencenews, 2019. Fertilizer produces far more greenhouse gases than expected. https://www.sciencenews.org/article/fertilizer-produces-far-more-greenhouse-gas-expected, (Accesed: 23 February 2024).
  • Sevuktekin, M., Cinar, M., 2017. Econometric Time Series Analysis; Dora Publishing: Bursa.
  • Sims, C., 1980. Macroeconomics and reality. Econometrica. 48: 1–48.
  • Smol, M., 2022. Is the green deal a global strategy? Revision of the green deal definitions, strategies and importance in post-COVID recovery plans in various regions of the world. Energy Policy. 169: 113-152.
  • Stewart, G. B., Smith, L. G., Jones, P. J. 2023. Food-related greenhouse gas emissions in the UK: Evidence from the Green Deal and beyond. Journal of Cleaner Production. 387: 135890.
  • Stewart, K., Balmford, A., Scheelbeek, P., Doherty, A., Garnett, E.E., 2023a. Changes in greenhouse gas emissions from food supply in the United Kingdom. Journal of Cleaner Production. 410(2): 137273.
  • Szpilko, D., Ejdys, J., 2022. European Green Deal–research directions. a systematic literature review. Ekonomia i Środowisko. 2: 8-38.
  • Thomas, R.L., 1997. Modern Econometrics—An Introduction; Addison Wesley Longman: London, UK.
  • UN, 2024. United Nations. Climate Action ,(Accessed 14 03 2024).
  • Uzel, G., Gürlük, S., Aşlak, E., Karaer, F., 2022. Land use preferences considering resource economics: case of organic versus con-ventional wheat production in Turkey. Environment, Development and Sustainability. 24: 14375-14392.

Türkiye'de Tarımsal Sera Gazı Emisyonları ve Ekonomik Büyüme Arasındaki Etkileşim: Tarımsal Üretici Emisyonları Majör Bir Faktör mü?

Yıl 2025, Cilt: 13 Sayı: 2, 390 - 407, 24.12.2025
https://doi.org/10.33202/comuagri.1724967

Öz

Türkiye’de tarım sektörü EU’ya uyum aşamasında pek çok kriteri yerine getirmiş / getiriyor olsa da iklim değişikliğine neden olan sera gazlarının azaltılması (mitigation) ya da adaptasyonu (adaptation) için bir strateji belirlememiştir. EU’da görülen çiftçi eylemlerinin önemli gerekçeleri arasında EU liderlerinin iklim değişikliği ile mücadele konularında çok hassas belki de katı bir tutum sergiliyor olmaları nedeniyledir. Bu çalışmada Türkiye’de farmgate sera gazı emisyonlarının (GHG) ekonomik büyüme ile ilişkisi incelenmiş, tarımın hâlen önemli bir gelir kaynağı olan ülkede tarım ve tarım dışı emisyonlarının GDP ile nedensellik (causal) ilişkisi Vector Autoregressif Model (VAR) yardımıyla anlaşılmaya çalışılmıştır. VAR sonuçlarına göre GDP, tarım dışı emisyonlar ve farmgate emisyonlaar arasında istatistiksel bir causality bulunmasa da emerging ekonomiler ve AB’nin izlediği patikada yol alan Türkiye’nin de yapması gerekenler arz yönlü ve talep yönlü olarak ayrıştırılmıştır. Türkiye’de kırsal kesimde yaşayanların yüzyıllardır uygulanan tarım tekniklerini mitigation amaçlı değiştirmesi zaman alabilir. Halihazırda current paper sonuçları bunu dikte etmemektedir. Ancak büyüyen ekonomide tarım dışı emisyonlarda bölgesel çalışmalara ve talep yanlı mitigation politikalarına kolaylıkla geçilebilir. EU gibi ülkelerde arz yanlı mitigation çalışmalarıyla başlayan süreç, ki EU çiftçisi yapısal anlamda daha hazırdı, Türkiye’de talep yanlı (diet değişimi, işleme sanayinde alınacak önlemler etc.) mitigation çalışmalarıyla başlayabilir. Tüketicilerde ve tarımsal hammaddeyi işleyicilerde görülen değişim dalgası farmgate mitigation a doğru ilerleyebilir.

Etik Beyan

Araştırma herhangi bir etik kurul kararı gerektirmemektedir.

Kaynakça

  • Akyüz, H.E., 2018. Statistical Analysis of Climatic Variables with Vector Autoregression Model (VAR). Int. J. Eng. Res. Dev. 10: 183–192.
  • Appiah, K., Du, J., Poku, J., 2018. Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution. 25: 24764-24777.
  • Baldock, D., Bartley, J., Framer, M., Hart, K., Lucchesi, V., Silcock, P., Zobbe, H., Pointereau, P., 2007. Evaluation of the environ-mental impacts of CAP (common agricultural policy) measures related to the beef and veal sector and the milk sector. Working Report of the Institute for European Environmental Policy for DG Agriculture, London.
  • Boyd, D., Pathak, M., Diemen, R., Skea, J., 2022. Mitigation co-benefits of climate change adaptation: A case-study analysis of eight cities. Sustainable Cities and Society. 77: 1-11.
  • Carbonbrief, 2024. Carbon Brief Clear on Climate Web Page. https://www.carbonbrief.org/analysis-how-do-the-eu-farmer-protests-relate-to-climate-change/ , (Accessed on 21 February 2024).
  • Chaabouni S., Saidi K., 2017. The dynamic links between carbon dioxide (CO2) emissions, health spending and GDP growth: a case study for 51 countries. Environmental Research. 158: 137–144.
  • Coderoni, S., Esposti, R., 2018a. CAP payments and agricultural GHG emissions in Italy. A farm-level assessment. Science of the Total Environment. 627: 427-437.
  • Coderoni, S., Esposti, R., 2018b. CAP payments and agricultural GHG emissions in Italy: An analysis of farm-level data. Environmental Science & Policy. 83: 239–248.
  • EDF, 2021. EU Green Deal- Main Elements and Roadmap. Economic Development Foundation of Türkiye.
  • FAO, 2019. FAO Corporate Statistical Database. http://www.fao.org/faostat/en/#data/GT ,(Accessed on March 2024).
  • Garvey, A., Norman, J., Barrett, J. 2022. Reducing The UK’s Food Footprint: Demand-Side Action for More Palatable Food emissi-ons.’CREDS Policy Brief 020. Centre for Research into Energy Demand Solutions. Oxford, UK.
  • Garvey, A., Norman, J., Owen, A., Barrett, J., 2021. Towards net zero nutrition: the contribution of demand-side change to mitigating UK food emissions. Journal of Cleaner Production. 290:125672
  • Gujarati, D.N., 2004. Basic Econometrics, New York: McGraw-Hill.
  • Gurluk, S., 2009. Economic growth, industrial pollution and human development in the Mediterranean Region. Ecological Economics. 68(8-9): 2327-2335.
  • Gurluk, S., 2015. Assessing Agri-Environmental Management and Inorganic Fertilizer Consumption Using Environmental Indicators. Outlook on Agriculture. 44(2): 135-141
  • Gültekin, Ö.E., Hayat, E.A., 2016. Analysis of Factors Affecting The Gold Prices Through Var Model:2005-2015 Period. Ege Academik Review. 16(4): 611-625.
  • Haider, A., Arooj B,, Muhammad I.H., 2020. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Science of Total Environment. 741: 140421. https://doi.org/10.1016/j.scitotenv.2020.140421
  • Han, J., Du, T,, Zhang, C., Qian, X., 2018. Correlation analysis of CO2 emissions, material stocks and economic growth nexus: Evi-dence from Chinese provinces. Journal of Cleaner Production. 180: 395-406.
  • Harris, J. M., 2002. Environmental and Natural resources economics: A contemporary approach. Houghton Mifflin College Div; First Edition, USA.
  • IPCC, 2006. Intergovernmental panel on climate change guidelines for national greenhouse gas inventories volume 4: agriculture, forestry and other land use. ISBN: 4-88788-032-4, Japan.
  • Jarecki, M., Lal, R., 2003. Crop management for soil carbon sequestration. Critical Reviews in Plant Sciences. 22: 471-502.
  • Jiang, W., Yu, Q., 2023. Carbon emissions and economic growth in China: Based on mixed frequency VAR analysis. Renewable and Sustainable Energy Reviews. 183(3): 113500.
  • Johnson, J.M., Franzluebbers, A.J., Weyers, S.L., Reicosky, D,C., 2017.Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution. 150: 107-124.
  • Joseph, M., 2022. Modern Time Series Forecasting with Python: Explore Industry-Ready Time Series Forecasting Using Modern Machine Learning and Deep Learning; Packt Publishing: Birmingham, UK.
  • Klemedtsson, A. K., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., Oenema, O., 1997. Greenhouse gas emissions from farmed organic soils: A review. Soil Use and Management. 13: 245–250.
  • Kyriazil, A., Miro, J., 2023. Towards a socially fair green transition in the EU?An analysis of the Just Transition Fund using the Multiple Streams Framework. Comparative European Politics. 21: 112–132.
  • Lal, R., 2007. Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change. 12: 303-322.
  • Muhadinovic, M., Djurovic, G., Bojaj, M.M., 2021. Forecasting Greenhouse Gas Emissions and Sustainable Growth in Montenegro: a SVAR Approach. Polish Journal of Environmental Studies. 30: 4115-4129.
  • Nguyen, C.P., Le, T.H., Schinckus, C., Su, T.D., 2020. Determinants of agricultural emissions: panel data evidence from a global sample. Environment and Development Economics. 2: 109-130.
  • Niles, M.T., Ahuja, R., Barker, T., Esquivel, J., Gutterman, S., Heller, M.C., Mango, N., Portner, D., Raimond, R., Tirado, C., Vermeulen, S., 2017. Climate change mitigation beyond agriculture: a review of food system opportunities and implications. Renewable Agriculture and Food Systems. 33: 297 – 308.
  • Özçicek, Ö., McMillin, D., 1999. Lag Length Selection in Vector Autoregressive Models: Symmetric and Asymmetric Lags. Appl. Econ., 31: 517–524.
  • Poore, J., Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science. 360: 987–92.
  • Prosperi, P., Bloise, M., Tubiello, F.N., Conchedda, G., Rossi, S., Boschetti, L., Salvatore, M., Bernoux, M., 2020. New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Climate Change. 161: 415–32.
  • Ravani, M., Georgiou, K., Tselempi, S., Monokrousos, N., Ntinas, G.K., 2024. Carbon Footprint of Greenhouse Production in EU—How Close Are We to Green Deal Goals? Sustainability. 16(1): 191. https://doi.org/10.3390/su16010191.
  • Rosenzweig, C., Mbow, C., Barioni, L.G., 2020. Climate change responses benefit from a global food system approach. Nature Food. 1: 94–7.
  • Saidi, K., Hammami S., 2015. The impact of energy consumption and CO2 emissions on economic growth: fresh evidence from dynamic simultaneous-equations models. Sustain Cities Soc., 14: 178–186.
  • Sarpong, K.A., Xu, W., Gyamfi, B.A., Ofori, E.K., 2023. Can environmental taxes and green‐energy offer carbon‐free E7 economies? An empirical analysis in the framework of COP‐26. Environmental Science and Pollution Research. 30: 51726–51739.
  • Sciencenews, 2019. Fertilizer produces far more greenhouse gases than expected. https://www.sciencenews.org/article/fertilizer-produces-far-more-greenhouse-gas-expected, (Accesed: 23 February 2024).
  • Sevuktekin, M., Cinar, M., 2017. Econometric Time Series Analysis; Dora Publishing: Bursa.
  • Sims, C., 1980. Macroeconomics and reality. Econometrica. 48: 1–48.
  • Smol, M., 2022. Is the green deal a global strategy? Revision of the green deal definitions, strategies and importance in post-COVID recovery plans in various regions of the world. Energy Policy. 169: 113-152.
  • Stewart, G. B., Smith, L. G., Jones, P. J. 2023. Food-related greenhouse gas emissions in the UK: Evidence from the Green Deal and beyond. Journal of Cleaner Production. 387: 135890.
  • Stewart, K., Balmford, A., Scheelbeek, P., Doherty, A., Garnett, E.E., 2023a. Changes in greenhouse gas emissions from food supply in the United Kingdom. Journal of Cleaner Production. 410(2): 137273.
  • Szpilko, D., Ejdys, J., 2022. European Green Deal–research directions. a systematic literature review. Ekonomia i Środowisko. 2: 8-38.
  • Thomas, R.L., 1997. Modern Econometrics—An Introduction; Addison Wesley Longman: London, UK.
  • UN, 2024. United Nations. Climate Action ,(Accessed 14 03 2024).
  • Uzel, G., Gürlük, S., Aşlak, E., Karaer, F., 2022. Land use preferences considering resource economics: case of organic versus con-ventional wheat production in Turkey. Environment, Development and Sustainability. 24: 14375-14392.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gökhan Uzel 0000-0001-9939-2523

Elif Erbek Bozaba 0000-0003-4353-9340

Sertaç Dokuzlu 0000-0002-8208-7124

Serkan Gürlük 0000-0002-3159-1769

Gönderilme Tarihi 23 Haziran 2025
Kabul Tarihi 18 Kasım 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Uzel, G., Erbek Bozaba, E., Dokuzlu, S., Gürlük, S. (2025). Agricultural Greenhouse Gas Emissions – Economic Growth Relationship in Türkiye: Are Agricultural Farmgate Emissions a Major Factor? ÇOMÜ Ziraat Fakültesi Dergisi, 13(2), 390-407. https://doi.org/10.33202/comuagri.1724967