İşbirlikli Öğrenme İle Birlikte Uygulanan Animasyonların, Modellerin ve Yedi İlke’nin Kimyanın Kavramsal Anlaşılmasına Etkisi
Yıl 2022,
, 1128 - 1171, 31.08.2022
Mustafa Alyar
,
Kemal Doymuş
Öz
Kimya, içerdiği soyut kavramlar sebebiyle anlaşılması zor bir disiplindir. Bu yüzden soyut yapıların anlaşılması kimyanın öğrenilmesinde oldukça önemlidir. Bu sebeple bu araştırma, işbirlikli öğrenmenin animasyonlar, modeller (oyun hamuru ve çubuk-top) ve yedi ilke (lisans eğitiminde niteliği arttırmak amacıyla ileri sürülen iyi bir eğitim için yedi ilke) ile uygulanmasının kimyanın kavramsal anlaşılmasına etkisini incelemektedir. Araştırma eşitlenmemiş karşılaştırma gruplu yarı-deneysel desene göre yürütülmüştür. Araştırmanın örneklemini 91 fen bilgisi öğretmenliği birinci sınıf öğrencisi oluşturmaktadır. Öğrenciler dört farklı deney grubuna ayrılmıştır. Birinci grupta işbirlikli öğrenme, ikinci grupta işbirlikli öğrenme ve yedi ilke, üçüncü grupta işbirlikli öğrenme ve animasyon, dördüncü grupta ise işbirlikli öğrenme ve modellerle uygulamalar gerçekleştirilmiştir. Veriler dört Modül Test ile toplanmıştır. Modül Testler, araştırmada uygulanan yöntem ve tekniklerin kavramsal anlamaya etkisini belirlemek amacıyla ön test ve son test olarak uygulanmıştır. Araştırmadan elde edilen bulgulara göre işbirlikli öğrenmenin yedi ilke ve işbirlikli öğrenmenin modeller ile birlikte uygulanmasının kimyanın kavramsal anlaşılmasında daha etkili olduğu sonucuna erişilmiştir.
Destekleyen Kurum
Atatürk Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
PRJ2015/413
Teşekkür
Atatürk Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne bu araştırmaya vermiş olduğu finansal destekten dolayı teşekkür ederiz.
Kaynakça
- Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353-374. https://doi.org/10.1080/09500693.2011.629013
- Abramczyk, A., & Jurkowski, S. (2020). Cooperative learning as an evidence-based teaching strategy: What teachers know, believe, and how they use it. Journal of Education for Teaching, 46(3), 296-308. https://doi.org/10.1080/02607476.2020.1733402
- Acar-Sesen, B., & L. Tarhan (2011). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435. https://doi.org/10.1007/s11165-011-9275-9
- Acar, B., & Tarhan, L. (2007). Effect of cooperative learning strategies on students' understanding of concepts in electrochemistry. International Journal of Science and Mathematics Education, 5(2), 349-373. https://doi.org/10.1007/s10763-006-9046-7
- Adadan, E. (2014). Investigating the influence of pre-service chemistry teachers’ understanding of the particle nature of matter on their conceptual understanding of solution chemistry. Chemical Education Research and Practice, 15, 219-238. https://doi.org/10.1039/C4RP00002A
- Aghajani, M., & Adloo, M. (2018). The effect of online cooperative learning on students' writing skills and attitudes through Telegram application. International Journal of Instruction, 11(3), 433-448. https://doi.org/10.12973/iji.2018.11330a
- Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students' mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788-807. https://doi.org/10.1039/C6RP00067C
- Akgün, A. (2009). Fen öğretmen adaylarının çözelti, çözünme ve difüzyon konusundaki kavram yanılgıları ve fen tutumları ile başarıları arasındaki ilişki. Eğitim ve Bilim, 34(154), 26-36.
- Allred, Z. D. R., & Bretz, S. L. (2019). University chemistry students’ interpretations of multiple representations of the helium atom. Chemistry Education Research and Practice, 20(2), 358-368. https://doi.org/10.1039/C8RP00296G
- Bicen, H., & Taspolat, A. (2019). Students’ views on the teaching process based on social media supported flipped classroom approach. Broad Research in Artificial Intelligence and Neuroscience, 10(4), 115-144. https://doi.org/10.18662/brain/08
- Bishoff, J. P. (2010). Utilization of the seven principles for good practice in undergraduate education in general chemistry by community college instructors (Publication No. 749781490) [Doctoral dissertation, University of West Virginia]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/749781490?pq-origsite=gscholar&fromopenview=true
- Bolliger, D. U., & Martin, F. (2018). Instructor and student perceptions of online student engagement strategies. Distance Education, 39(4), 568-583. https://doi.org/10.1080/01587919.2018.1520041
- Boz, Y. (2009). Turkish prospective chemistry teachers’ alternative conceptions about acids and bases. School Science and Mathematics, 109(4), 212-222. https://doi.org/10.1111/j.1949-8594.2009.tb18259.x
- Brown, G. T., Peterson, E. R., & Yao, E. S. (2016). Student conceptions of feedback: Impact on self‐regulation, self‐efficacy, and academic achievement. British Journal of Educational Psychology, 86(4), 606-629. https://doi.org/10.1111/bjep.12126
- Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (12. Bs.). Pegem Akademi.
- Caboni, T. C., Mundy, M. E., & Duesterhaus, M. B. (2002). The implications of the norms of undergraduate college students for faculty enactment of principles of good practice in undergraduate education. Peabody Journal of Education, 77(3), 125-137. https://doi.org/10.1207/S15327930PJE7703_7
- Chan, M. (2020). A multilevel SEM study of classroom talk on cooperative learning and academic achievement: Does cooperative scaffolding matter? International Journal of Educational Research, 101, 1-12. https://doi.org/10.1016/j.ijer.2020.101564
- Chickering, A. W., & Gamson, Z. (1987). Seven principles of good practice in undergraduate education. AAHE Bulletin, 39 (7), 3-7.
- Chickering, A. W., & Gamson, Z. (1999). Development and adaptations of the seven principles for good practice in undergraduate education. New Directions for Teaching and Learning, 80, 75-81.
- Cloonan, C. A., Nichol, C. A., & Hutchinson, J. S. (2011). Understanding chemical reaction kinetics and equilibrium with interlocking building blocks. Journal of Chemical Education, 88(10), 1400-1403. https://doi.org/10.1021/ed1010773
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
- Costouros, T. (2020). Jigsaw cooperative learning versus traditional lectures: Impact on student grades and learning experience. Teaching & Learning Inquiry, 8(1), 154-172. http://dx.doi.org/10.20343/teachlearninqu.8.1.11
- Crews, T. B., Wilkinson, K., & Neill, J. K. (2015). Principles for good practice in undergraduate education: Effective online course design to assist students’ success. Journal of Online Learning and Teaching, 11(1), 87-103.
- Çalık, M., & Ayas, A.(2005). A comparison of level of understanding of grade 8 students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6),638-667. https://doi.org/10.1002/tea.20076
- Çavdar, O., & Doymuş, K. (2018). Karışımlar konusunun öğretilmesinde işbirlikli öğrenme yönteminin iyi bir eğitim ortamı için yedi ilke ve modellerle kullanılması. Eğitimde Kuram ve Uygulama, 14(3), 325–346. https://doi.org/10.17244/eku.328018
- Dere, E., Avcı Yücel, U., & Yalçınalp, S. (2016). İlköğretim öğrencilerinin eğitsel bir çevrimiçi sosyal öğrenme ortamı olan Edmodo’ya ilişkin görüşleri. İlköğretim Online, 15(3), 804–819. https://doi.org/10.17051/io.2016.49794
- Ergin, Ö., Şahin-Pekmez, E., & Öngel-Erdal, S. (2012). Kuramdan uygulamaya deney yoluyla fen öğretimi. Dinozor kitabevi.
- Eshietedoho, C. G. (2010). The effects of cooperative learning methods on minority ninth graders in earth and space science (Publication No. 604991358) [Doctoral dissertation, Nova Southeastern University]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/604991358?pq-origsite=gscholar&fromopenview=true
- Fırat, M. (2014). Maddenin yapısı ve özellikleri ünitesinin öğretiminde iki farklı işbirlikli öğrenme yönteminin öğrencilerin akademik başarıları ve epistemolojik tutumları üzerine etkisi [Yayınlanmamış yüksek lisans tezi], Atatürk Üniversitesi.
- Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple‐model use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
- Hattie, J. (2015). The applicability of visible learning to higher education. Scholarship of Teaching and Learning in Psychology, 1(1), 79–91. https://doi.org/10.1037/stl0000021
- Hoe, K. Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid–base chemistry among secondary students: Insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263-282. https://doi.org/10.1039/C5RP00146C
- Hohenshell, M. L., & Hand, B. (2006). Writing-to-learn strategies in secondary school cell biology: A mixed method study. International Journal of Science Education, 28(2), 261-289. https://doi.org/10.1080/09500690500336965
- Izzati, S., & Rochmah, N. (2020). Analysis of students’ comprehension and misconception towards the topic of salt solubility. Jurnal Penelitian dan Pembelajaran IPA, 6(1), 152-165. https://doi.org/10.30870/jppi.v6i1.7324
- Johnson, D., Johnson, R., & Smith, K. A. (1990). Cooperative learning: An active learning strategy. FOCUS on Teaching and Learning, 5(2), 1-8.
- Johnstone, A. H. (1982). Macro and microchemistry. School Science Review, 64, 377-379.
- Junco, R., Heibergert, G., & Lokent, E. (2011). The effect of twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27, 119-132. https://doi.org/10.1111/j.1365-2729.2010.00387.x
- Karacop, A., & Doymus, K. (2013). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education and Technology, 22(2), 186-203. https://doi.org/10.1007/s10956-012-9385-9
- Karataş, F. Ö., Köse, S., & Coştu, B. (2003). Öğrenci yanılgılarını ve anlama düzeylerini belirlemede kullanılan iki aşamalı testler. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(13), 54-69.
- Karpudewan, M., Treagust, D. F., Mocerino, M., Won, M., & Chandrasegaran, A. L. (2015). Investigating high school students’ understanding of chemical equilibrium concepts. International Journal of Environmental and Science Education, 10(6), 845-863. https://doi.org/10.12973/ijese.2015.280a
- Karsli, F., & Çalık, M. (2012). Can freshman science student teachers’ alternative conceptions of ‘electrochemical cells’ be fully diminished? Asian Journal of Chemistry, 24(2), 485-491.
- Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolution affect students’ explanations. Journal of Science Education and Technology, 16(5), 413-429. https://doi.org/10.1007/s10956-007-9065-3
- Kelly, R. M. (2016). ConfChem conference on interactive visualizations for chemistry teaching and learning: Insights into molecular visualization design. Journal of Chemical Education, 93(6), 1142-1144. https://doi.org/10.1021/acs.jchemed.5b00556
- Kıngır, S., & Geban, Ö. (2014). 10th grade students’ conceptions about chemical change. Türk Fen Eğitimi Dergisi, 11(1), 43-62. https://doi.org/10.12973/tused.10102a
- Kimberlin, S., & Yezierski, E. (2016). Effectiveness of inquiry-based lessons using particulate level models to develop high school students’ understanding of conceptual stoichiometry. Journal of Chemical Education, 93, 1002−1009. https://doi.org/10.1021/acs.jchemed.5b01010
- Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45, 367–393. https://doi.org/10.1007/s11165-014-9427-9
- Lemma, A. (2013). A diagnostic assessment of eighth grade students’ and their teachers’ misconceptions about basic chemical concepts. African Journal of Chemical Education, 3(1), 39-59.
- McMillan, J. H., & Schumacher, S. (2010). Research in education: Evidence-based inquiry. Pearson.
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage Publications.
- Milli Eğitim Bakanlığı. (2018). Ortaöğretim kimya dersi öğretim programı. MEB Yayınları.
- Okumuş, S., & Doymuş, K. (2018). İyi bir eğitim ortamı için yedi ilkenin işbirlikli öğrenme ve modellerle birlikte uygulanmasının 6. sınıf öğrencilerinin fen başarısına etkisi. Bayburt Eğitim Fakültesi Dergisi, 13(25), 203-238.
- Oliva, J. M., del Mar Aragón, M., & Cuesta, J. (2015). The competence of modelling in learning chemical change: A study with secondary school students. International Journal of Science and Mathematics Education, 13(4), 751-791.
- Osman, K., & Lee, T. T. (2014). Impact of interactive multimedia module with pedagogical agents on students’understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12(2), 395-421. https://doi.org/10.1007/s10763-013-9407-y
- Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114-1126. https://doi.org/10.1016/j.compedu.2010.12.004
- Öztürk, B., & Doymuş, K. (2018). İyi bir eğitim ortamı için yedi ilke ve modellerle desteklenen işbirlikli öğrenme yöntemlerinin akademik başarıya etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 22(2), 1957-1976.
- Samon, S., & Levy, S. T. (2017). Micro–macro compatibility: When does a complex systems approach strongly benefit science learning? Science Education, 101(6), 985-1014. https://doi.org/10.1002/sce.21301
- Schoonen, R., Gelderen, A., Stoel, R. D., & Glopper, K. (2010). Modeling the devolopment of L1 and EFL writing proficiency of secondary school student. Language Learning, 20(10), 1-49. https://doi.org/10.1111/j.1467-9922.2010.00590.x
- Sormunen, K., Juuti, K., & Lavonen, J. (2020). Maker-centered project-based learning in inclusive classes: Supporting students’ active participation with teacher-directed reflective discussions. International Journal of Science and Mathematics Education, 18(4), 691-712. https://doi.org/10.1007/s10763-019-09998-9
- Sowan, A. K., & Jenkins, L. S. (2013). Designing, delivering and evaluating a distance learning nursing course responsive to students needs. International Journal of Medical Informatics, 82(6), 553-564. https://doi.org/10.1016/j.ijmedinf.2013.02.004
- Şimşek, Ü., Doymuş, K., & Karaçöp, A. (2008). Çözeltiler ünitesinde uygulanan grup araştırması tekniğinin öğrencilerin maddenin tanecikli yapısını anlamalarına ve akademik başarılarına etkisi. Bayburt Eğitim Fakültesi Dergisi, 3(1), 87-99.
- Taber, K. S. (2019). Alternative conceptions and the learning of chemistry. Israel Journal of Chemistry, 59(6-7), 450-469. https://doi.org/10.1002/ijch.201800046
- Tadesse, T., Gillies, R. M., & Manathunga, C. (2020). Shifting the instructional paradigm in higher education classrooms in Ethiopia: What happens when we use cooperative learning pedagogies more seriously? International Journal of Educational Research, 99, 1-12. https://doi.org/10.1016/j.ijer.2019.101509
- Tanis, C. J. (2020). The seven principles of online learning: Feedback from faculty and alumni on its importance for teaching and learning. Research in Learning Technology, 28, 2319. https://doi.org/10.25304/rlt.v28.2319
- Tarhan, L., & Acar-Sesen, B. (2013). Problem based learning in acids and bases: Learning achievements and students’ beliefs. Journal of Baltic Science Education, 12(5), 565-578.
- The Ohio Learning Network. (2002). Quality learning in Ohio and at a distance: A report of the Ohio Learning network Task Force on quality in distance learning. http://www.oln.org/ILT/7_principles/learn_more.php
- Tien, L. T., Teichert, M. A., & Rickey, D. (2007). Effectiveness of a MORE laboratory module in prompting students to revise their molecular-level ideas about solutions. Journal of Chemical Education, 84(1), 175-181. https://doi.org/10.1021/ed084p175
- Tirrell, T. (2009). Examining the impact of Chickering’s seven principles of good practice on student attrition in online courses in the community college (Publication No. 304862513) [Doctoral dissertation, Colorado State University]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/304862513?pq-origsite=gscholar&fromopenview=true
- Tuapawa, K. (2017). Interpreting experiences of students using educational online technologies to interact with teachers in blended tertiary environments: A phenomenological study. Australasian Journal of Educational Technology, 33(1). https://doi.org/10.14742/ajet.2964
- URL-1. (2016, February 17). Edmodo main page. https://www.edmodo.com/?language=tr
- URL-2. (2016, February 17). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/animations/chang_7e_esp/
- URL-3. (2016, February 19). Satriwit3 http://www.satriwit3.ac.th/files/1210252020285154/files/decomposition.swf
- URL-4. (2016, February 19). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml
- URL-5. (2016, February 19). High school of dundee https://pupils.highschoolofdundee.org.uk/dept/chemistry/default.aspx
- URL-6. (2016, February 21). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml
- URL-7. (2022, January 20) We have retired Flash. Adobe. https://www.adobe.com/tr/products/flashplayer/end-of-life-alternative.html
- Uzuntiryaki, E., & Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33(4), 311-339. https://doi.org/10.1007/s11251-005-2812-z
- Wang, Z., Chi, S., Hu, K., & Chen, W. (2014). Chemistry teachers’ knowledge and application of models. Journal of Science Education Technology, 23, 211–226. https://doi.org/10.1007/s10956-013-9455-7
- Warfa, A. R. M. (2016). Using cooperative learning to teach chemistry: A meta-analytic review. Journal of Chemical Education, 93(2), 248-255. https://doi.org/10.1021/acs.jchemed.5b00608
- Weir, J. A. (2004). Active learning in transportation engineering education (Publication No. 305366413) [Doctoral dissertation, Worcester Poly Technic Institute]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/305366413?pq-origsite=gscholar&fromopenview=true
- White, R. T., & Gustone, R. F. (1989). Metalearning and conceptual change. International Journal Science Education, 11(5), 577-586. https://doi.org/10.1080/0950069890110509
- Whittle, R. J., Telford, A., & Benson, A. C. (2019). Insights from senior-secondary physical education students on teacher-related factors they perceive to influence academic achievement. Australian Journal of Teacher Education (Online), 44(6), 69-90. https://doi.org/10.14221/ajte.2018v44n6.5
- Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534. https://doi.org/10.1002/tea.3660320508
- Yaseen, Z. (2018). Using student-generated animations: The challenge of dynamic chemical models in states of matter and the invisibility of the particles. Chemistry Education Research and Practice, 19(4), 1166–1185. https://doi.org/10.1039/c8rp00136g
- Yorganci, S. (2020). Implementing flipped learning approach based on ‘first principles of instruction’in mathematics courses. Journal of Computer Assisted Learning, 36(5), 763-779. https://doi.org/10.1111/jcal.12448
- Zheng, S. L., & Campbell, M. G. (2018). Connecting key concepts with student experience: Introducing small-molecule crystallography to chemistry undergraduates using a flexible laboratory module. Journal of Chemical Education, 95(12), 2279-2283. https://doi.org/10.1021/acs.jchemed.7b00985
The Impact of Animations, Models, and Seven Principles Applied Together with Cooperative Learning on Conceptual Understanding of Chemistry
Yıl 2022,
, 1128 - 1171, 31.08.2022
Mustafa Alyar
,
Kemal Doymuş
Öz
Chemistry is a discipline that is conceptually difficult to understand due to the number of abstract concepts it contains. Therefore, understanding abstract concepts is one of the most crucial steps in the process of learning chemistry. The present study aimed to explore the effect of application of cooperative learning through animations, models (play dough and stick-ball), and seven principles (seven principles for good practice to improve the quality of undergraduate education) on the conceptual understanding of chemistry. The sample of the study consisted of 91 first-year pre-service science teachers enrolled in a teacher education program in Turkey. A quasi-experimental design with non-equivalent pretest-posttest comparison groups was used in the study. The students were assigned into four groups. The applications included cooperative learning in the first group, cooperative learning and seven principles in the second group, cooperative learning and animation in the third group, and cooperative learning and models in the fourth group. Four Module Tests were used for data collection. In order to explore the effects of applied methods and techniques on conceptual understanding, Module Tests were applied as both pretest and posttest. The results of the study showed that applying cooperative learning with the seven principles and cooperative learning with models has a greater impact on the conceptual understanding of chemistry compared to other applications.
Proje Numarası
PRJ2015/413
Kaynakça
- Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353-374. https://doi.org/10.1080/09500693.2011.629013
- Abramczyk, A., & Jurkowski, S. (2020). Cooperative learning as an evidence-based teaching strategy: What teachers know, believe, and how they use it. Journal of Education for Teaching, 46(3), 296-308. https://doi.org/10.1080/02607476.2020.1733402
- Acar-Sesen, B., & L. Tarhan (2011). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435. https://doi.org/10.1007/s11165-011-9275-9
- Acar, B., & Tarhan, L. (2007). Effect of cooperative learning strategies on students' understanding of concepts in electrochemistry. International Journal of Science and Mathematics Education, 5(2), 349-373. https://doi.org/10.1007/s10763-006-9046-7
- Adadan, E. (2014). Investigating the influence of pre-service chemistry teachers’ understanding of the particle nature of matter on their conceptual understanding of solution chemistry. Chemical Education Research and Practice, 15, 219-238. https://doi.org/10.1039/C4RP00002A
- Aghajani, M., & Adloo, M. (2018). The effect of online cooperative learning on students' writing skills and attitudes through Telegram application. International Journal of Instruction, 11(3), 433-448. https://doi.org/10.12973/iji.2018.11330a
- Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students' mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788-807. https://doi.org/10.1039/C6RP00067C
- Akgün, A. (2009). Fen öğretmen adaylarının çözelti, çözünme ve difüzyon konusundaki kavram yanılgıları ve fen tutumları ile başarıları arasındaki ilişki. Eğitim ve Bilim, 34(154), 26-36.
- Allred, Z. D. R., & Bretz, S. L. (2019). University chemistry students’ interpretations of multiple representations of the helium atom. Chemistry Education Research and Practice, 20(2), 358-368. https://doi.org/10.1039/C8RP00296G
- Bicen, H., & Taspolat, A. (2019). Students’ views on the teaching process based on social media supported flipped classroom approach. Broad Research in Artificial Intelligence and Neuroscience, 10(4), 115-144. https://doi.org/10.18662/brain/08
- Bishoff, J. P. (2010). Utilization of the seven principles for good practice in undergraduate education in general chemistry by community college instructors (Publication No. 749781490) [Doctoral dissertation, University of West Virginia]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/749781490?pq-origsite=gscholar&fromopenview=true
- Bolliger, D. U., & Martin, F. (2018). Instructor and student perceptions of online student engagement strategies. Distance Education, 39(4), 568-583. https://doi.org/10.1080/01587919.2018.1520041
- Boz, Y. (2009). Turkish prospective chemistry teachers’ alternative conceptions about acids and bases. School Science and Mathematics, 109(4), 212-222. https://doi.org/10.1111/j.1949-8594.2009.tb18259.x
- Brown, G. T., Peterson, E. R., & Yao, E. S. (2016). Student conceptions of feedback: Impact on self‐regulation, self‐efficacy, and academic achievement. British Journal of Educational Psychology, 86(4), 606-629. https://doi.org/10.1111/bjep.12126
- Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (12. Bs.). Pegem Akademi.
- Caboni, T. C., Mundy, M. E., & Duesterhaus, M. B. (2002). The implications of the norms of undergraduate college students for faculty enactment of principles of good practice in undergraduate education. Peabody Journal of Education, 77(3), 125-137. https://doi.org/10.1207/S15327930PJE7703_7
- Chan, M. (2020). A multilevel SEM study of classroom talk on cooperative learning and academic achievement: Does cooperative scaffolding matter? International Journal of Educational Research, 101, 1-12. https://doi.org/10.1016/j.ijer.2020.101564
- Chickering, A. W., & Gamson, Z. (1987). Seven principles of good practice in undergraduate education. AAHE Bulletin, 39 (7), 3-7.
- Chickering, A. W., & Gamson, Z. (1999). Development and adaptations of the seven principles for good practice in undergraduate education. New Directions for Teaching and Learning, 80, 75-81.
- Cloonan, C. A., Nichol, C. A., & Hutchinson, J. S. (2011). Understanding chemical reaction kinetics and equilibrium with interlocking building blocks. Journal of Chemical Education, 88(10), 1400-1403. https://doi.org/10.1021/ed1010773
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
- Costouros, T. (2020). Jigsaw cooperative learning versus traditional lectures: Impact on student grades and learning experience. Teaching & Learning Inquiry, 8(1), 154-172. http://dx.doi.org/10.20343/teachlearninqu.8.1.11
- Crews, T. B., Wilkinson, K., & Neill, J. K. (2015). Principles for good practice in undergraduate education: Effective online course design to assist students’ success. Journal of Online Learning and Teaching, 11(1), 87-103.
- Çalık, M., & Ayas, A.(2005). A comparison of level of understanding of grade 8 students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6),638-667. https://doi.org/10.1002/tea.20076
- Çavdar, O., & Doymuş, K. (2018). Karışımlar konusunun öğretilmesinde işbirlikli öğrenme yönteminin iyi bir eğitim ortamı için yedi ilke ve modellerle kullanılması. Eğitimde Kuram ve Uygulama, 14(3), 325–346. https://doi.org/10.17244/eku.328018
- Dere, E., Avcı Yücel, U., & Yalçınalp, S. (2016). İlköğretim öğrencilerinin eğitsel bir çevrimiçi sosyal öğrenme ortamı olan Edmodo’ya ilişkin görüşleri. İlköğretim Online, 15(3), 804–819. https://doi.org/10.17051/io.2016.49794
- Ergin, Ö., Şahin-Pekmez, E., & Öngel-Erdal, S. (2012). Kuramdan uygulamaya deney yoluyla fen öğretimi. Dinozor kitabevi.
- Eshietedoho, C. G. (2010). The effects of cooperative learning methods on minority ninth graders in earth and space science (Publication No. 604991358) [Doctoral dissertation, Nova Southeastern University]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/604991358?pq-origsite=gscholar&fromopenview=true
- Fırat, M. (2014). Maddenin yapısı ve özellikleri ünitesinin öğretiminde iki farklı işbirlikli öğrenme yönteminin öğrencilerin akademik başarıları ve epistemolojik tutumları üzerine etkisi [Yayınlanmamış yüksek lisans tezi], Atatürk Üniversitesi.
- Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple‐model use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
- Hattie, J. (2015). The applicability of visible learning to higher education. Scholarship of Teaching and Learning in Psychology, 1(1), 79–91. https://doi.org/10.1037/stl0000021
- Hoe, K. Y., & Subramaniam, R. (2016). On the prevalence of alternative conceptions on acid–base chemistry among secondary students: Insights from cognitive and confidence measures. Chemistry Education Research and Practice, 17(2), 263-282. https://doi.org/10.1039/C5RP00146C
- Hohenshell, M. L., & Hand, B. (2006). Writing-to-learn strategies in secondary school cell biology: A mixed method study. International Journal of Science Education, 28(2), 261-289. https://doi.org/10.1080/09500690500336965
- Izzati, S., & Rochmah, N. (2020). Analysis of students’ comprehension and misconception towards the topic of salt solubility. Jurnal Penelitian dan Pembelajaran IPA, 6(1), 152-165. https://doi.org/10.30870/jppi.v6i1.7324
- Johnson, D., Johnson, R., & Smith, K. A. (1990). Cooperative learning: An active learning strategy. FOCUS on Teaching and Learning, 5(2), 1-8.
- Johnstone, A. H. (1982). Macro and microchemistry. School Science Review, 64, 377-379.
- Junco, R., Heibergert, G., & Lokent, E. (2011). The effect of twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27, 119-132. https://doi.org/10.1111/j.1365-2729.2010.00387.x
- Karacop, A., & Doymus, K. (2013). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education and Technology, 22(2), 186-203. https://doi.org/10.1007/s10956-012-9385-9
- Karataş, F. Ö., Köse, S., & Coştu, B. (2003). Öğrenci yanılgılarını ve anlama düzeylerini belirlemede kullanılan iki aşamalı testler. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(13), 54-69.
- Karpudewan, M., Treagust, D. F., Mocerino, M., Won, M., & Chandrasegaran, A. L. (2015). Investigating high school students’ understanding of chemical equilibrium concepts. International Journal of Environmental and Science Education, 10(6), 845-863. https://doi.org/10.12973/ijese.2015.280a
- Karsli, F., & Çalık, M. (2012). Can freshman science student teachers’ alternative conceptions of ‘electrochemical cells’ be fully diminished? Asian Journal of Chemistry, 24(2), 485-491.
- Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolution affect students’ explanations. Journal of Science Education and Technology, 16(5), 413-429. https://doi.org/10.1007/s10956-007-9065-3
- Kelly, R. M. (2016). ConfChem conference on interactive visualizations for chemistry teaching and learning: Insights into molecular visualization design. Journal of Chemical Education, 93(6), 1142-1144. https://doi.org/10.1021/acs.jchemed.5b00556
- Kıngır, S., & Geban, Ö. (2014). 10th grade students’ conceptions about chemical change. Türk Fen Eğitimi Dergisi, 11(1), 43-62. https://doi.org/10.12973/tused.10102a
- Kimberlin, S., & Yezierski, E. (2016). Effectiveness of inquiry-based lessons using particulate level models to develop high school students’ understanding of conceptual stoichiometry. Journal of Chemical Education, 93, 1002−1009. https://doi.org/10.1021/acs.jchemed.5b01010
- Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45, 367–393. https://doi.org/10.1007/s11165-014-9427-9
- Lemma, A. (2013). A diagnostic assessment of eighth grade students’ and their teachers’ misconceptions about basic chemical concepts. African Journal of Chemical Education, 3(1), 39-59.
- McMillan, J. H., & Schumacher, S. (2010). Research in education: Evidence-based inquiry. Pearson.
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage Publications.
- Milli Eğitim Bakanlığı. (2018). Ortaöğretim kimya dersi öğretim programı. MEB Yayınları.
- Okumuş, S., & Doymuş, K. (2018). İyi bir eğitim ortamı için yedi ilkenin işbirlikli öğrenme ve modellerle birlikte uygulanmasının 6. sınıf öğrencilerinin fen başarısına etkisi. Bayburt Eğitim Fakültesi Dergisi, 13(25), 203-238.
- Oliva, J. M., del Mar Aragón, M., & Cuesta, J. (2015). The competence of modelling in learning chemical change: A study with secondary school students. International Journal of Science and Mathematics Education, 13(4), 751-791.
- Osman, K., & Lee, T. T. (2014). Impact of interactive multimedia module with pedagogical agents on students’understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12(2), 395-421. https://doi.org/10.1007/s10763-013-9407-y
- Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114-1126. https://doi.org/10.1016/j.compedu.2010.12.004
- Öztürk, B., & Doymuş, K. (2018). İyi bir eğitim ortamı için yedi ilke ve modellerle desteklenen işbirlikli öğrenme yöntemlerinin akademik başarıya etkisi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 22(2), 1957-1976.
- Samon, S., & Levy, S. T. (2017). Micro–macro compatibility: When does a complex systems approach strongly benefit science learning? Science Education, 101(6), 985-1014. https://doi.org/10.1002/sce.21301
- Schoonen, R., Gelderen, A., Stoel, R. D., & Glopper, K. (2010). Modeling the devolopment of L1 and EFL writing proficiency of secondary school student. Language Learning, 20(10), 1-49. https://doi.org/10.1111/j.1467-9922.2010.00590.x
- Sormunen, K., Juuti, K., & Lavonen, J. (2020). Maker-centered project-based learning in inclusive classes: Supporting students’ active participation with teacher-directed reflective discussions. International Journal of Science and Mathematics Education, 18(4), 691-712. https://doi.org/10.1007/s10763-019-09998-9
- Sowan, A. K., & Jenkins, L. S. (2013). Designing, delivering and evaluating a distance learning nursing course responsive to students needs. International Journal of Medical Informatics, 82(6), 553-564. https://doi.org/10.1016/j.ijmedinf.2013.02.004
- Şimşek, Ü., Doymuş, K., & Karaçöp, A. (2008). Çözeltiler ünitesinde uygulanan grup araştırması tekniğinin öğrencilerin maddenin tanecikli yapısını anlamalarına ve akademik başarılarına etkisi. Bayburt Eğitim Fakültesi Dergisi, 3(1), 87-99.
- Taber, K. S. (2019). Alternative conceptions and the learning of chemistry. Israel Journal of Chemistry, 59(6-7), 450-469. https://doi.org/10.1002/ijch.201800046
- Tadesse, T., Gillies, R. M., & Manathunga, C. (2020). Shifting the instructional paradigm in higher education classrooms in Ethiopia: What happens when we use cooperative learning pedagogies more seriously? International Journal of Educational Research, 99, 1-12. https://doi.org/10.1016/j.ijer.2019.101509
- Tanis, C. J. (2020). The seven principles of online learning: Feedback from faculty and alumni on its importance for teaching and learning. Research in Learning Technology, 28, 2319. https://doi.org/10.25304/rlt.v28.2319
- Tarhan, L., & Acar-Sesen, B. (2013). Problem based learning in acids and bases: Learning achievements and students’ beliefs. Journal of Baltic Science Education, 12(5), 565-578.
- The Ohio Learning Network. (2002). Quality learning in Ohio and at a distance: A report of the Ohio Learning network Task Force on quality in distance learning. http://www.oln.org/ILT/7_principles/learn_more.php
- Tien, L. T., Teichert, M. A., & Rickey, D. (2007). Effectiveness of a MORE laboratory module in prompting students to revise their molecular-level ideas about solutions. Journal of Chemical Education, 84(1), 175-181. https://doi.org/10.1021/ed084p175
- Tirrell, T. (2009). Examining the impact of Chickering’s seven principles of good practice on student attrition in online courses in the community college (Publication No. 304862513) [Doctoral dissertation, Colorado State University]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/304862513?pq-origsite=gscholar&fromopenview=true
- Tuapawa, K. (2017). Interpreting experiences of students using educational online technologies to interact with teachers in blended tertiary environments: A phenomenological study. Australasian Journal of Educational Technology, 33(1). https://doi.org/10.14742/ajet.2964
- URL-1. (2016, February 17). Edmodo main page. https://www.edmodo.com/?language=tr
- URL-2. (2016, February 17). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/animations/chang_7e_esp/
- URL-3. (2016, February 19). Satriwit3 http://www.satriwit3.ac.th/files/1210252020285154/files/decomposition.swf
- URL-4. (2016, February 19). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml
- URL-5. (2016, February 19). High school of dundee https://pupils.highschoolofdundee.org.uk/dept/chemistry/default.aspx
- URL-6. (2016, February 21). McGraw-Hill higher education support. http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/flash.mhtml
- URL-7. (2022, January 20) We have retired Flash. Adobe. https://www.adobe.com/tr/products/flashplayer/end-of-life-alternative.html
- Uzuntiryaki, E., & Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33(4), 311-339. https://doi.org/10.1007/s11251-005-2812-z
- Wang, Z., Chi, S., Hu, K., & Chen, W. (2014). Chemistry teachers’ knowledge and application of models. Journal of Science Education Technology, 23, 211–226. https://doi.org/10.1007/s10956-013-9455-7
- Warfa, A. R. M. (2016). Using cooperative learning to teach chemistry: A meta-analytic review. Journal of Chemical Education, 93(2), 248-255. https://doi.org/10.1021/acs.jchemed.5b00608
- Weir, J. A. (2004). Active learning in transportation engineering education (Publication No. 305366413) [Doctoral dissertation, Worcester Poly Technic Institute]. ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/305366413?pq-origsite=gscholar&fromopenview=true
- White, R. T., & Gustone, R. F. (1989). Metalearning and conceptual change. International Journal Science Education, 11(5), 577-586. https://doi.org/10.1080/0950069890110509
- Whittle, R. J., Telford, A., & Benson, A. C. (2019). Insights from senior-secondary physical education students on teacher-related factors they perceive to influence academic achievement. Australian Journal of Teacher Education (Online), 44(6), 69-90. https://doi.org/10.14221/ajte.2018v44n6.5
- Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534. https://doi.org/10.1002/tea.3660320508
- Yaseen, Z. (2018). Using student-generated animations: The challenge of dynamic chemical models in states of matter and the invisibility of the particles. Chemistry Education Research and Practice, 19(4), 1166–1185. https://doi.org/10.1039/c8rp00136g
- Yorganci, S. (2020). Implementing flipped learning approach based on ‘first principles of instruction’in mathematics courses. Journal of Computer Assisted Learning, 36(5), 763-779. https://doi.org/10.1111/jcal.12448
- Zheng, S. L., & Campbell, M. G. (2018). Connecting key concepts with student experience: Introducing small-molecule crystallography to chemistry undergraduates using a flexible laboratory module. Journal of Chemical Education, 95(12), 2279-2283. https://doi.org/10.1021/acs.jchemed.7b00985