Araştırma Makalesi
BibTex RIS Kaynak Göster

Sayısal Ters Laplace Dönüşümü için Zhao ve Durbin Methodlarının Performans Analizi

Yıl 2023, , 507 - 513, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1334117

Öz

Laplace dönüşümü kompozit ya da fonksiyonel derecelendirilmiş malzemelerin dinamik analizlerinde, zamana olan bağımlılığı ortadan kaldırmak için önemli bir yöntemdir. Zamandan bağımsız sınır değer problemleri analitik ya da sayısal olarak çözülebilir. Elde edilen sonuçlar fiziksel uzaya ters Laplace dönüşümü ile çevirilir. Bu yüzden seçilecek olan ters dönüşüm yöntemi tüm analiz adımlarında yüksek doğruluk elde edilmesi bakımından oldukça önemli olabilir. Bu çalışmada, Zhao Method I, Zhao Method II, Durbin Method ve Düzeltilmiş Durbin Methodları dinamik yükleme koşulları için uygulanmıştır. Analiz sonuçları, uzun süreli çözümlemelerde bile Düzeltilmiş Durbin ve Zhao Methodları ile güvenli ve stabil sonuçlar elde edildiğini göstermiştir. Fakat, Zhao Methodları ile kıyaslandığında Düzeltilmiş Durbin Methodu’nun programlama ve hesaplama yükü çok daha azdır.

Kaynakça

  • 1. Cohen, A.M., 2007. Numerical Methods for Laplace Transform Inversion. Springer-Verlag, New York, 252.
  • 2. Miller, M.K., Guy W., 1966. Numerical Inversion of The Laplace Transform by Use of Jacobi Polynomials. SIAM J. Num. Anal., 3(4), 624-635.
  • 3. Genin, R., Calvez, L., 1968. Numerical Inversion of The Laplace Transform Using Laguerre Polynomials. Electron. Lett., 4(21), 461-462.
  • 4. Pavelyev, A.G., 2019. Duality Principle and New Forms of The Inverse Laplace Transform for Signal Propagation Analysis in Inhomogeneous Media with Dispersion. Dokl. Math., 100(3), 594-599.
  • 5. Zhao, X., 2004. An Efficient Approach for The Numerical Inversion of Laplace Transform and Its Application in Dynamic Fracture Analysis of A Piezoelectric Laminate. Int. J. Solids Struct., 41(13), 3653-3674.
  • 6. Chen, K.F, Mei S.L., 2011. Accelerations of Zhao's Methods for The Numerical Inversion of Laplace Transform. Int. J. Numer. Methods Biomed, 27(2), 273-282.
  • 7. Temel, B., Noori, A.R., 2019. Transient Analysis of Laminated Composite Parabolic Arches of Uniform Thickness. Mech. Based Des. Struct. Mach., 47(5), 546-554.
  • 8. Li, X.F., 2008. A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler-Bernoulli Beams. J. Sound Vib., 318(4), 1210-1229.
  • 9. Pekel, H., Keles, I., Temel, B., Tutuncu, N., 2011. Transient Response of FGM Pressure Vessels. Vibration Problems (ICOVP 2011), Prague, 315-320.

Performance Analysis of Zhao and Durbin Numerical Inversion Methods of Laplace Transform

Yıl 2023, , 507 - 513, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1334117

Öz

The Laplace transform is essential to satisfy the independence of time for the analysis of the transient response of the composite or functionally-graded materials. The time independent boundary value problem may be solved then either by numerically or analytically. The solutions should be inverted to the physical plane using inverse Laplace transform. Therefore, the selected numerical inversion method may be crucial to obtain the high accuracy throughout the whole analysis steps. In the present study, Zhao’s Method I, Zhao’s Method II, Durbin’s Method and Modified Durbin’s Method are applied to dynamic loading conditions. The analysis results show that the accurate and stable solutions even for long time inversion have been obtained by Modified Durbin’s Method and Zhao’s Methods. However, compared with the methods of Zhao’s, the computational and programing load of Durbin’s Methods are minimum.

Kaynakça

  • 1. Cohen, A.M., 2007. Numerical Methods for Laplace Transform Inversion. Springer-Verlag, New York, 252.
  • 2. Miller, M.K., Guy W., 1966. Numerical Inversion of The Laplace Transform by Use of Jacobi Polynomials. SIAM J. Num. Anal., 3(4), 624-635.
  • 3. Genin, R., Calvez, L., 1968. Numerical Inversion of The Laplace Transform Using Laguerre Polynomials. Electron. Lett., 4(21), 461-462.
  • 4. Pavelyev, A.G., 2019. Duality Principle and New Forms of The Inverse Laplace Transform for Signal Propagation Analysis in Inhomogeneous Media with Dispersion. Dokl. Math., 100(3), 594-599.
  • 5. Zhao, X., 2004. An Efficient Approach for The Numerical Inversion of Laplace Transform and Its Application in Dynamic Fracture Analysis of A Piezoelectric Laminate. Int. J. Solids Struct., 41(13), 3653-3674.
  • 6. Chen, K.F, Mei S.L., 2011. Accelerations of Zhao's Methods for The Numerical Inversion of Laplace Transform. Int. J. Numer. Methods Biomed, 27(2), 273-282.
  • 7. Temel, B., Noori, A.R., 2019. Transient Analysis of Laminated Composite Parabolic Arches of Uniform Thickness. Mech. Based Des. Struct. Mach., 47(5), 546-554.
  • 8. Li, X.F., 2008. A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler-Bernoulli Beams. J. Sound Vib., 318(4), 1210-1229.
  • 9. Pekel, H., Keles, I., Temel, B., Tutuncu, N., 2011. Transient Response of FGM Pressure Vessels. Vibration Problems (ICOVP 2011), Prague, 315-320.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer), Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Sefa Yıldırım Bu kişi benim 0000-0002-9204-5868

Yayımlanma Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yıldırım, S. (2023). Performance Analysis of Zhao and Durbin Numerical Inversion Methods of Laplace Transform. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 507-513. https://doi.org/10.21605/cukurovaumfd.1334117