Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektroeğirme Yöntemi ile Üretilen Antimikrobiyal Nanolif Membranlarda Lycopodium Özütü Etkisinin İncelenmesi

Yıl 2024, , 1027 - 1038, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606113

Öz

Bu çalışmada, Lycopodium bitkisinden elde edilen fenolik bileşenler kullanılarak çevreci, ekonomik ve büyük ölçekli üretilebilen antimikrobiyal nanolif membranlar geliştirilmiştir. Bitki özütü, oda sıcaklığında polimer çözücüsü DMF ile karıştırılıp süzülerek elde edilmiştir. %12 PAN polimeri ile farklı konsantrasyonlarda Lycopodium özütü içeren çözeltiler hazırlanmış ve elektroeğirme yöntemiyle nanolif membranlar üretilmiştir. Üretilen dört farklı membran (%0, %1, %3, %5 oranlarında bitki özütü içeren membranlar) SEM görüntüleriyle incelenmiş, bitki konsantrasyonunun artışıyla boncuksu yapıların azaldığı ve nanolif kalınlıklarının arttığı gözlenmiştir. %5 oranında özüt içeren membranda nanolif kalınlığı 607 nm’ye çıkarak kontrol membranından yaklaşık üç kat daha kalın olmuştur. FT-IR analizinde 5L membranında oksijen bağlarını temsil eden piklerin kaybolduğu ve 3L membranında antimikrobiyal etkinin başarılı bir şekilde elde edildiği tespit edilmiştir.

Kaynakça

  • 1. Xue, J., Wu, T., Dai, Y., Xia, Y., 2019. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415.
  • 2. Shi, R., Ye, J., Li, W., Zhang, J., Li, J., Wu, C., Zhang, L., 2019. Infection-responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane. Materials Science and Engineering: C, 100, 523- 534.
  • 3. Xue, C., Hsu, K.M., Chiu, C.Y., Chang, Y.K., Ng, I.S., 2021. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere, 266, 128967.
  • 4. Mousa, H.M., Hamdy, M., Yassin, M.A., Seleman, M.M.E.S., Abdel-Jaber, G.T., 2022. Characterization of nanofiber composite membrane for high water flux and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129655.
  • 5. Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., Al-Oufy, A., 2018. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364.
  • 6. Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., Yang, F., 2009. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489-1512.
  • 7. Li, M., Wang, D., Xiao, R., Sun, G., Zhao, Q., Li, H., 2013. A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Separation and Purification Technology, 116, 199-205.
  • 8. HMTShirazi, R., Mohammadi, T., Asadi, A.A., Tofighy, M.A., 2022. Electrospun nanofiber affinity membranes for water treatment applications: A review. Journal of Water Process Engineering, 47, 102795.
  • 9. Tian, J.Y., Ernst, M., Cui, F., Jekel, M., 2013. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Research, 47(3), 1218-1228.
  • 10. Gao, Y., Qin, J., Wang, Z., Østerhus, S.W., 2019. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587, 117136.
  • 11. Yu, Y., Zhou, Z., Huang, G., Cheng, H., Han, L., Zhao, S., Meng, F., 2022. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Research, 222, 118901.
  • 12. Preda, N., Costas, A., Beregoi, M., Apostol, N., Kuncser, A., Curutiu, C., Enculescu, I., 2020. Functionalization of eggshell membranes with CuO–ZnO based p–n junctions for visible light induced antibacterial activity against Escherichia coli. Scientific Reports, 10(1), 20960.
  • 13. Padovani, G.S., Sanches, A.O., Moura Aouada, M.R., Malmonge, L.F., de Paula, F.R., 2024. Photocatalytic and antimicrobial efficacy of PVDF/TiO2 membranes fabricated by solution blow spinning. Journal of Applied Polymer Science, 141(1), e54761.
  • 14. Silva, M.A., Felgueiras, H.P., De Amorim, M.T.P., 2020. Carbon based membranes with modified properties: Thermal, morphological, mechanical and antimicrobial. Cellulose, 27, 1497-1516.
  • 15. Luo, D., Wang, C., Tong, Y., Liu, C., Xiao, Y., Zhu, Z., Wang, Y., 2020. An NIF-doped ZIF-8 hybrid membrane for continuous antimicrobial treatment. RSC Advances, 10(13), 7360-7367.
  • 16. Geng, Q., Dong, S., Li, Y., Wu, H., Yang, X., Ning, X., Yuan, D., 2022. High-performance photoinduced antimicrobial membrane toward efficient PM2. 5-0.3 capture and oil-water separation. Separation and Purification Technology, 284, 120267.
  • 17. Jackson, J.C., Camargos, C.H., Liu, C., Martinez, D.S., Paula, A.J., Rezende, C.A., Faria, A.F., 2024. Antimicrobial activity of thin-film composite membranes functionalized with cellulose nanocrystals and silver nanoparticles via one-pot deposition and layer-by-layer assembly. Environmental Science: Water Research & Technology, 10(3), 639-651.
  • 18. Homaeigohar, S., Boccaccini, A.R., 2020. Antibacterial biohybrid nanofibers for wound dressings. Acta biomaterialia, 107, 25-49.
  • 19. Chouhan, D., Chakraborty, B., Nandi, S.K., Mandal, B.B., 2017. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta biomaterialia, 48, 157- 174.
  • 20. Paskiabi, F.A., Bonakdar, S., Shokrgozar, M.A., Imani, M., Jahanshiri, Z., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M., 2017. Terbinafine-loaded wound dressing for chronic superficial fungal infections. Materials Science and Engineering: C, 73, 130-136.
  • 21. Bulman, S.E., Tronci, G., Goswami, P., Carr, C., Russell, S.J., 2017. Antibacterial properties of nonwoven wound dressings coated with Manuka honey or methylglyoxal. Materials, 10(8), 954.
  • 22. Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P.P., Mele, E., 2015. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry B, 3(8), 1583-1589.
  • 23. Shan, Y.H., Peng, L.H., Liu, X., Chen, X., Xiong, J., Gao, J.Q., 2015. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. International Journal of Pharmaceutics, 479(2), 291-301.
  • 24. Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S.R., Biswas, S.J., 2014. A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. Journal of Pharmacognosy and Phytochemistry, 3(1), 207-210.
  • 25. Orhan, I., Özçelik, B., Aslan, S., Kartal, M., Karaoglu, T., Şener, B., Choudhary, M.I., 2007. Antioxidant and antimicrobial actions of the clubmoss Lycopodium clavatum L.. Phytochemistry Reviews, 6, 189-196.
  • 26. Dymek, A., Widelski, J., Wojtanowski, K.K., Płoszaj, P., Zhuravchak, R., Mroczek, T., 2021. Optimization of pressurized liquid extraction of Lycopodiaceae alkaloids obtained from two Lycopodium species. Molecules, 26(6), 1626.
  • 27. Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831.
  • 28. Wang, C., Chien, H.S., Hsu, C.H., Wang, Y.C., Wang, C.T., Lu, H.A., 2007. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 40(22), 7973-7983.
  • 29. Nasouri, K., Shoushtari, A.M., Kaflou, A., 2012. Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro & Nano Letters, 7(5), 423-426.
  • 30. Wu, M., Wang, Q., Li, K., Wu, Y., Liu, H., 2012. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97(8), 1511-1519.
  • 31. Zhang, C., Yang, Q., Zhan, N., Sun, L., Wang, H., Song, Y., Li, Y., 2010. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1-3), 58-64.
  • 32. Higashi, S., Hirai, T., Matsubara, M., Yoshida, H., Beniya, A., 2020. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Scientific Reports, 10(1), 13427.
  • 33. Stepanyan, R., Subbotin, A.V., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F., Bulters, M.J.H., 2016. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer, 97, 428-439.
  • 34. Gu, S.Y., Ren, J., Vancso, G.J., 2005. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41(11), 2559-2568.
  • 35. Ben-Sasson, M., Lu, X., Bar-Zeev, E., Zodrow, K.R., Nejati, S., Qi, G., Elimelech, M., 2014. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Research, 62, 260-270.
  • 36. Perreault, F., Jaramillo, H., Xie, M., Ude, M., Nghiem, L.D., Elimelech, M., 2016. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environmental Science & Technology, 50(11), 5840-5848.

Investigation of the Effect of Lycopodium Extract on Antimicrobial Nanofibrous Membranes Fabricated by Electrospinning Method

Yıl 2024, , 1027 - 1038, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606113

Öz

In this study, antimicrobial nanofiber membranes were developed using phenolic components obtained from the Lycopodium plant, which are environmentally friendly, economical, and suitable for large-scale production. The plant extract was mixed with the polymer solvent DMF at room temperature and then filtered to obtain the solution. Solutions containing 12% PAN polymer and varying concentrations of Lycopodium extract were prepared, and nanofiber membranes were produced using the electrospinning method. Four different membranes (membranes containing 0%, 1%, 3%, 5% plant extracts) were examined using SEM images, revealing a decrease in bead-like structures and an increase in nanofiber thickness with higher plant concentrations. The nanofiber thickness in the membrane having 5% plant extract increased to 607 nm, making it approximately three times thicker than the control membrane. FT-IR analysis showed that the peaks representing oxygen bonds were absent in the 5L membrane, and the 3L membrane demonstrated successful antimicrobial activity.

Kaynakça

  • 1. Xue, J., Wu, T., Dai, Y., Xia, Y., 2019. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415.
  • 2. Shi, R., Ye, J., Li, W., Zhang, J., Li, J., Wu, C., Zhang, L., 2019. Infection-responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane. Materials Science and Engineering: C, 100, 523- 534.
  • 3. Xue, C., Hsu, K.M., Chiu, C.Y., Chang, Y.K., Ng, I.S., 2021. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere, 266, 128967.
  • 4. Mousa, H.M., Hamdy, M., Yassin, M.A., Seleman, M.M.E.S., Abdel-Jaber, G.T., 2022. Characterization of nanofiber composite membrane for high water flux and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129655.
  • 5. Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., Al-Oufy, A., 2018. Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364.
  • 6. Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., Yang, F., 2009. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489-1512.
  • 7. Li, M., Wang, D., Xiao, R., Sun, G., Zhao, Q., Li, H., 2013. A novel high flux poly (trimethylene terephthalate) nanofiber membrane for microfiltration media. Separation and Purification Technology, 116, 199-205.
  • 8. HMTShirazi, R., Mohammadi, T., Asadi, A.A., Tofighy, M.A., 2022. Electrospun nanofiber affinity membranes for water treatment applications: A review. Journal of Water Process Engineering, 47, 102795.
  • 9. Tian, J.Y., Ernst, M., Cui, F., Jekel, M., 2013. Correlations of relevant membrane foulants with UF membrane fouling in different waters. Water Research, 47(3), 1218-1228.
  • 10. Gao, Y., Qin, J., Wang, Z., Østerhus, S.W., 2019. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: A review. Journal of Membrane Science, 587, 117136.
  • 11. Yu, Y., Zhou, Z., Huang, G., Cheng, H., Han, L., Zhao, S., Meng, F., 2022. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. Water Research, 222, 118901.
  • 12. Preda, N., Costas, A., Beregoi, M., Apostol, N., Kuncser, A., Curutiu, C., Enculescu, I., 2020. Functionalization of eggshell membranes with CuO–ZnO based p–n junctions for visible light induced antibacterial activity against Escherichia coli. Scientific Reports, 10(1), 20960.
  • 13. Padovani, G.S., Sanches, A.O., Moura Aouada, M.R., Malmonge, L.F., de Paula, F.R., 2024. Photocatalytic and antimicrobial efficacy of PVDF/TiO2 membranes fabricated by solution blow spinning. Journal of Applied Polymer Science, 141(1), e54761.
  • 14. Silva, M.A., Felgueiras, H.P., De Amorim, M.T.P., 2020. Carbon based membranes with modified properties: Thermal, morphological, mechanical and antimicrobial. Cellulose, 27, 1497-1516.
  • 15. Luo, D., Wang, C., Tong, Y., Liu, C., Xiao, Y., Zhu, Z., Wang, Y., 2020. An NIF-doped ZIF-8 hybrid membrane for continuous antimicrobial treatment. RSC Advances, 10(13), 7360-7367.
  • 16. Geng, Q., Dong, S., Li, Y., Wu, H., Yang, X., Ning, X., Yuan, D., 2022. High-performance photoinduced antimicrobial membrane toward efficient PM2. 5-0.3 capture and oil-water separation. Separation and Purification Technology, 284, 120267.
  • 17. Jackson, J.C., Camargos, C.H., Liu, C., Martinez, D.S., Paula, A.J., Rezende, C.A., Faria, A.F., 2024. Antimicrobial activity of thin-film composite membranes functionalized with cellulose nanocrystals and silver nanoparticles via one-pot deposition and layer-by-layer assembly. Environmental Science: Water Research & Technology, 10(3), 639-651.
  • 18. Homaeigohar, S., Boccaccini, A.R., 2020. Antibacterial biohybrid nanofibers for wound dressings. Acta biomaterialia, 107, 25-49.
  • 19. Chouhan, D., Chakraborty, B., Nandi, S.K., Mandal, B.B., 2017. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta biomaterialia, 48, 157- 174.
  • 20. Paskiabi, F.A., Bonakdar, S., Shokrgozar, M.A., Imani, M., Jahanshiri, Z., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M., 2017. Terbinafine-loaded wound dressing for chronic superficial fungal infections. Materials Science and Engineering: C, 73, 130-136.
  • 21. Bulman, S.E., Tronci, G., Goswami, P., Carr, C., Russell, S.J., 2017. Antibacterial properties of nonwoven wound dressings coated with Manuka honey or methylglyoxal. Materials, 10(8), 954.
  • 22. Liakos, I., Rizzello, L., Hajiali, H., Brunetti, V., Carzino, R., Pompa, P.P., Mele, E., 2015. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry B, 3(8), 1583-1589.
  • 23. Shan, Y.H., Peng, L.H., Liu, X., Chen, X., Xiong, J., Gao, J.Q., 2015. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. International Journal of Pharmaceutics, 479(2), 291-301.
  • 24. Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S.R., Biswas, S.J., 2014. A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. Journal of Pharmacognosy and Phytochemistry, 3(1), 207-210.
  • 25. Orhan, I., Özçelik, B., Aslan, S., Kartal, M., Karaoglu, T., Şener, B., Choudhary, M.I., 2007. Antioxidant and antimicrobial actions of the clubmoss Lycopodium clavatum L.. Phytochemistry Reviews, 6, 189-196.
  • 26. Dymek, A., Widelski, J., Wojtanowski, K.K., Płoszaj, P., Zhuravchak, R., Mroczek, T., 2021. Optimization of pressurized liquid extraction of Lycopodiaceae alkaloids obtained from two Lycopodium species. Molecules, 26(6), 1626.
  • 27. Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831.
  • 28. Wang, C., Chien, H.S., Hsu, C.H., Wang, Y.C., Wang, C.T., Lu, H.A., 2007. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules, 40(22), 7973-7983.
  • 29. Nasouri, K., Shoushtari, A.M., Kaflou, A., 2012. Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro & Nano Letters, 7(5), 423-426.
  • 30. Wu, M., Wang, Q., Li, K., Wu, Y., Liu, H., 2012. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97(8), 1511-1519.
  • 31. Zhang, C., Yang, Q., Zhan, N., Sun, L., Wang, H., Song, Y., Li, Y., 2010. Silver nanoparticles grown on the surface of PAN nanofiber: Preparation, characterization and catalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1-3), 58-64.
  • 32. Higashi, S., Hirai, T., Matsubara, M., Yoshida, H., Beniya, A., 2020. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Scientific Reports, 10(1), 13427.
  • 33. Stepanyan, R., Subbotin, A.V., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F., Bulters, M.J.H., 2016. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer, 97, 428-439.
  • 34. Gu, S.Y., Ren, J., Vancso, G.J., 2005. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41(11), 2559-2568.
  • 35. Ben-Sasson, M., Lu, X., Bar-Zeev, E., Zodrow, K.R., Nejati, S., Qi, G., Elimelech, M., 2014. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Research, 62, 260-270.
  • 36. Perreault, F., Jaramillo, H., Xie, M., Ude, M., Nghiem, L.D., Elimelech, M., 2016. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes. Environmental Science & Technology, 50(11), 5840-5848.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomateryaller, Çevresel Olarak Sürdürülebilir Mühendislik, Temiz Üretim Teknolojileri, Ayırma Teknolojileri
Bölüm Makaleler
Yazarlar

Ayşe Yüksekdağ 0000-0002-7751-7556

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yüksekdağ, A. (2024). Elektroeğirme Yöntemi ile Üretilen Antimikrobiyal Nanolif Membranlarda Lycopodium Özütü Etkisinin İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 1027-1038. https://doi.org/10.21605/cukurovaumfd.1606113