Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancing Early Strength Development of Alkali-Activated Slag through Preheating of Materials

Yıl 2023, Cilt: 38 Sayı: 4, 1129 - 1138, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410789

Öz

Alkali-activated cements have gained attention as sustainable alternatives to Portland cement-based concretes. This study aims to enhance the early strength development of alkali-activated slag (AAS) mortars by preheating the alkali activator, ground granulated blast furnace slag, and aggregates to temperatures reaching up to 65°C before their utilization. Preheating at 50°C enhances both early and ultimate strength of AAS, compared to specimens that were not subjected to preheating. Similarly, preheating at 65°C results in a substantial increase in early strength but leads to some strength reduction after three days. SEM and FTIR analyses reveal that preheating at 50°C improves the interfacial transition zone between paste and aggregate, reduces microcracks, and promotes alkali activation. Furthermore, FTIR analysis confirms the occurrence of hydration reactions in AAS upon contact with water.

Kaynakça

  • 1. Amer, I., Kohail, M., El-Feky, M.S., Rashad, A., Khalaf, M.A., 2021. A Review on Alkali-Activated Slag Concrete. Ain Shams Engineering Journal, 12(2), 1475-1499.
  • 2. Erdoğan, T.Y., 2016. Beton (Concrete). METU Press Publishing Company, 6. ed. Ankara, 757.
  • 3. Provis, J.L., 2018. Alkali-Activated Materials. Cement Concrete Research, 114, 40-48.
  • 4. Roy, D.M., 1999. Alkali-Activated Cements Opportunities and Challenges. Cement Concrete Research, 29(2), 249-254.
  • 5. Yener, E., Karaaslan, C., 2020. Curing Time and Temperature Effect on the Resistance to Wet-Dry Cycles of Fly Ash Added Pumice Based Geopolymer. Cement Based Composites, 1(2), 19-25.
  • 6. Rovnaník, P., 2010. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer. Construction Building Materials, 24(7), 1176-1183.
  • 7. Karaaslan, C., Yener, E., Bağatur, T., Polat, R., Gül, R., Alma, M.H., 2022. Synergic Effect of Fly Ash and Calcium Aluminate Cement on the Properties of Pumice-Based Geopolymer Mortar. Construction and Building Materials, 345, 128397.
  • 8. Bakharev, T., Sanjayan, J.G., Cheng, Y.B., 1999. Effect of Elevated Temperature Curing on Properties of Alkali-Activated Slag Concrete. Cement Concrete Research, 29(10), 1619-1625.
  • 9. Nguyen, K.T., Le, T.A., Lee, J., Lee, D., Lee, K., 2017. Investigation on Properties of Geopolymer Mortar Using Preheated Materials and Thermogenetic Admixtures. Construction Building Materials, 130, 146-155.
  • 10. Souza, M.T., Simão, L., Moraes E.G., Senff, L., Pessôa, J.R.C., Ribeiro, M.J., Oliveire, A.P.N., 2021. Role of Temperature in 3D Printed Geopolymers: Evaluating Rheology and Buildability. Materials Letters, 293, 129680.
  • 11. Mazumder, E.A., Prasad, L.M., 2023. Performance Enhancement of Fly Ash-Based Self Compacting Geopolymer Concrete Using Pre-heating Technique, Iranian Journal of Science Technology. Transactions of Civil Engineering, 1-13.
  • 12. Danish, A., Öz, A., Bayrak, B., Kaplan, G., Aydın, A.C., Ozbakkaloglu, T., 2023. Performance Evaluation and Cost Analysis of Prepacked Geopolymers Containing Waste Marble Powder Under Different Curing Temperatures for Sustainable Built Environment. Resources, Conservation Recycling, 192, 106910.
  • 13. TS EN 196-1, 2016. Çimento Deney Metotları - Bölüm 1: Dayanım Tayini (Methods of Testing Cement - Part 1: Determination of Strength), Ankara.
  • 14. Yang, K.H., Song, J.K., Lee, K.S., Ashour, A.F., 2009. Flow and Compressive Strength of Alkali-Activated Mortars, ACI Materials Journal, 106(1), 50-58.
  • 15. TS EN 12390-7, 2010. Beton - Sertleşmiş Beton Deneyleri - Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini (Testing Hardened Concrete - Part 7: Density of Hardened Concrete), Ankara.
  • 16. Suwan, T., Fan, M., Braimah, N., 2016. Internal Heat Liberation and Strength Development of Self-Cured Geopolymers in Ambient Curing Conditions. Construction Building Materials, 114, 297-306.
  • 17. Zhang, Z., Zhu, Y., Zhu, H., Zhang, Y., Provis, J.L., Wang, H., 2019. Effect of Drying Procedures on Pore Structure and Phase Evolution of Alkali-Activated Cements. Cement Concrete Composites, 96, 194-203.
  • 18. Cao, R., Zhang, S., Banthia, N., Zhang, Y., Zhang, Z., 2020. Interpreting the Early-Age Reaction Process of Alkali-Activated Slag By Using Combined Embedded Ultrasonic Measurement, Thermal Analysis, XRD, FTIR and SEM. Composites Part B: Engineering, 186, 107840.
  • 19. Tchadjié, L.N, Djobo, J.N.Y., Ranjbar, N., Tchakouté, H.K., Kenne, B.B.D., Elimbi, A., Njopwouo, D., 2016. Potential of Using Granite Waste as Raw Material for Geopolymer Synthesis. Ceramics International, 42(2), 3046-3055.
  • 20. Karaaslan, C., Yener, E., Bağatur, T., Polat, R., 2022. Improving the Durability of Pumice-Fly Ash Based Geopolymer Concrete with Calcium Aluminate Cement. Journal of Building Engineering, 59, 105110.

Malzemelerin Isıtılarak Kullanılması ile Alkali-Aktive Cürufların Erken-dönem Dayanım Gelişimlerinin İyileştirilmesi

Yıl 2023, Cilt: 38 Sayı: 4, 1129 - 1138, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410789

Öz

Alkali ile aktive edilmiş çimentolar, Portland çimentosu esaslı betonlara sürdürülebilir alternatifler olarak dikkat çekmektedir. Bu çalışmada, alkali aktivatör, öğütülmüş granüle yüksek fırın cürufu ve agreganın 65°C’ye kadar ısıtılması yoluyla alkali ile aktive edilmiş cüruf (AAS) esaslı harçların erken yaştaki dayanım gelişimlerinin iyileştirilmesi amaçlanmıştır. Ön ısıtmaya tabi tutulmayan AAS ile kıyaslandığında, 50°C’lik ön ısıtma, AAS’nin hem ilk günlerdeki hem de nihai dayanımını artırırken 65°C’lik ön ısıtma, AAS’nin ilk saatlerdeki dayanımını önemli derecede artırırken 3 günden sonraki dayanımlarda bir miktar düşüşlere sebep olmuştur. 50°C’lik ön ısıtmanın hamur ile agrega arasındaki bağı arttırdığı, mikro çatlakları azaltarak daha yoğun bir matris oluşturduğu ve alkali aktivasyonu ilerlettiği SEM ve FTIR analizlerinden anlaşılmaktadır. Ayrıca FTIR analizleri, suyla temas eden AAS’lerde hidratasyon reaksiyonlarının gerçekleştiğini göstermektedir.

Kaynakça

  • 1. Amer, I., Kohail, M., El-Feky, M.S., Rashad, A., Khalaf, M.A., 2021. A Review on Alkali-Activated Slag Concrete. Ain Shams Engineering Journal, 12(2), 1475-1499.
  • 2. Erdoğan, T.Y., 2016. Beton (Concrete). METU Press Publishing Company, 6. ed. Ankara, 757.
  • 3. Provis, J.L., 2018. Alkali-Activated Materials. Cement Concrete Research, 114, 40-48.
  • 4. Roy, D.M., 1999. Alkali-Activated Cements Opportunities and Challenges. Cement Concrete Research, 29(2), 249-254.
  • 5. Yener, E., Karaaslan, C., 2020. Curing Time and Temperature Effect on the Resistance to Wet-Dry Cycles of Fly Ash Added Pumice Based Geopolymer. Cement Based Composites, 1(2), 19-25.
  • 6. Rovnaník, P., 2010. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer. Construction Building Materials, 24(7), 1176-1183.
  • 7. Karaaslan, C., Yener, E., Bağatur, T., Polat, R., Gül, R., Alma, M.H., 2022. Synergic Effect of Fly Ash and Calcium Aluminate Cement on the Properties of Pumice-Based Geopolymer Mortar. Construction and Building Materials, 345, 128397.
  • 8. Bakharev, T., Sanjayan, J.G., Cheng, Y.B., 1999. Effect of Elevated Temperature Curing on Properties of Alkali-Activated Slag Concrete. Cement Concrete Research, 29(10), 1619-1625.
  • 9. Nguyen, K.T., Le, T.A., Lee, J., Lee, D., Lee, K., 2017. Investigation on Properties of Geopolymer Mortar Using Preheated Materials and Thermogenetic Admixtures. Construction Building Materials, 130, 146-155.
  • 10. Souza, M.T., Simão, L., Moraes E.G., Senff, L., Pessôa, J.R.C., Ribeiro, M.J., Oliveire, A.P.N., 2021. Role of Temperature in 3D Printed Geopolymers: Evaluating Rheology and Buildability. Materials Letters, 293, 129680.
  • 11. Mazumder, E.A., Prasad, L.M., 2023. Performance Enhancement of Fly Ash-Based Self Compacting Geopolymer Concrete Using Pre-heating Technique, Iranian Journal of Science Technology. Transactions of Civil Engineering, 1-13.
  • 12. Danish, A., Öz, A., Bayrak, B., Kaplan, G., Aydın, A.C., Ozbakkaloglu, T., 2023. Performance Evaluation and Cost Analysis of Prepacked Geopolymers Containing Waste Marble Powder Under Different Curing Temperatures for Sustainable Built Environment. Resources, Conservation Recycling, 192, 106910.
  • 13. TS EN 196-1, 2016. Çimento Deney Metotları - Bölüm 1: Dayanım Tayini (Methods of Testing Cement - Part 1: Determination of Strength), Ankara.
  • 14. Yang, K.H., Song, J.K., Lee, K.S., Ashour, A.F., 2009. Flow and Compressive Strength of Alkali-Activated Mortars, ACI Materials Journal, 106(1), 50-58.
  • 15. TS EN 12390-7, 2010. Beton - Sertleşmiş Beton Deneyleri - Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini (Testing Hardened Concrete - Part 7: Density of Hardened Concrete), Ankara.
  • 16. Suwan, T., Fan, M., Braimah, N., 2016. Internal Heat Liberation and Strength Development of Self-Cured Geopolymers in Ambient Curing Conditions. Construction Building Materials, 114, 297-306.
  • 17. Zhang, Z., Zhu, Y., Zhu, H., Zhang, Y., Provis, J.L., Wang, H., 2019. Effect of Drying Procedures on Pore Structure and Phase Evolution of Alkali-Activated Cements. Cement Concrete Composites, 96, 194-203.
  • 18. Cao, R., Zhang, S., Banthia, N., Zhang, Y., Zhang, Z., 2020. Interpreting the Early-Age Reaction Process of Alkali-Activated Slag By Using Combined Embedded Ultrasonic Measurement, Thermal Analysis, XRD, FTIR and SEM. Composites Part B: Engineering, 186, 107840.
  • 19. Tchadjié, L.N, Djobo, J.N.Y., Ranjbar, N., Tchakouté, H.K., Kenne, B.B.D., Elimbi, A., Njopwouo, D., 2016. Potential of Using Granite Waste as Raw Material for Geopolymer Synthesis. Ceramics International, 42(2), 3046-3055.
  • 20. Karaaslan, C., Yener, E., Bağatur, T., Polat, R., 2022. Improving the Durability of Pumice-Fly Ash Based Geopolymer Concrete with Calcium Aluminate Cement. Journal of Building Engineering, 59, 105110.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri, İnşaat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Cemal Karaaslan 0000-0002-8993-7566

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 4

Kaynak Göster

APA Karaaslan, C. (2023). Enhancing Early Strength Development of Alkali-Activated Slag through Preheating of Materials. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1129-1138. https://doi.org/10.21605/cukurovaumfd.1410789