Araştırma Makalesi
BibTex RIS Kaynak Göster

API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi

Yıl 2016, Cilt: 31 Sayı: ÖS1, 1 - 10, 15.08.2016
https://doi.org/10.21605/cukurovaummfd.311031

Öz

Bu çalışmada; doğalgaz ve petrol boru hatlarında kullanılan API 5L X65 kalitesindeki çelik malzemeler, MAG kaynak yöntemiyle özlü rutil tel ile birleştirilmiştir. Birleştirmelerden alınan numunelerin mikroyapı ve mekanik özelliklere etkileri incelenmiştir. Deneysel çalışmalarda makro ve mikroyapısal olarak, ana malzeme, ITAB) ve kaynak metali incelenmiş, oluşan yapıların tipik kaynak işlem özelliklerine sahip yapılar olduğu tespit edilmiştir. Çekme, çentik darbe, sertlik ve eğme testlerinde kaynak işlemi kusursuz özellikler sergilemiştir. Elde edilen tüm sonuçlar, kaynak işleminin mikroyapısal ve mekanik olarak kendinden beklenen lokal özellikleri karşılayabilecek bir tavır sergilediğini göstermiştir.

Kaynakça

  • 1. Bai, Y., 2001. Pipelines and Risers, Elsevier, Oxford, UK.
  • 2. Baek, J. H., Kim, Y. P., Kim, K., Kim, C.M., Kim, W.S. and Seok, C. S., 2010. Effects of Pre-strain on the Mechanical Properties of API 5L X65 Pipe, Materials Science and Engineering (A), 527, p. 1473-1479.
  • 3. Baek, J., Kima, Y., Kima, W.,Koo, J., Seok, C, 2012. Load bearing capacity of API X65 pipe with dent defect under internal pressure and in-plane bending, Materials Science and Engineering (A) 540, p. 70–82.
  • 4. Cosham, A., Hopkins, P., 2004. The effect of dents in pipelines - guidance in the pipeline defect assessment manual, International Journal of Pressure Vessels and Piping, 81 pp. 127– 139.
  • 5. API Specifications 5L, 2007. Specificationsfor Line Pipe, 44th Edition, American Petroleum Institute, USA.
  • 6. Hashemi, S.H., 2011. Strength - hardness statisticalcorrellation in API X65 steel, Material Science and Engineering (A) 528, pp. 1648–1655.
  • 7. Hashemi, S.H., Mohammadyani, D., 2012. Characterisation of weldment hardness, impactenergy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping, 98, pp. 8–15.
  • 8. Rakhshkhorshid, M., Hashemi, S.H., 2013. Experimental study of hot deformation behavior in API X65 steel, Materials Science and Engineering (A) 573, pp. 37–44.
  • 9. Ada, H. 2006. Petrol ve doğalgaz boru hatları için üretilen boruların tozaltı ve spiral kaynak yöntemiyle kaynaklanabilirliği ve mekanik özelliklerinin incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi.
  • 10. Migahed, M.A., Al-Sabagh, A.M., Khamis, E.A., Zaki, E.G., 2015. Quantum Chemical calculations, synthesis and corrosion inhibition efficiency of ethoxylated-[2-(2-{2-[2-(2-benzene sulfonyl amino ethylamino) - ethylamino] -ethylamino} – ethylamino - ethyl] – 4 – alkyl benzene sulfonamide on API X65 steel surface under H2S environment, Journal of Molecular Liquids, 212, pp. 360–371.
  • 11. Rani, B.E., Amitha. and Basu, Bharathibai, J., 2009. Green corrosion inhibitors - an overview, Technical Report, National Aerospace Laboratories, Bangalore, India.
  • 12. Shaban, M., Eghbali, B., 2010. Determination of critical conditions for dynamic recrystallization of a microalloyed steel, Materials Science and Engineering (A), 527, pp. 4320–4325.
  • 13. Jin, W., Jun, C., Zhen, Z., Xue-yu, R.J., 2008. Iron Steel Res. Int. 15, pp. 78–81.
  • 14. Moradpour, M.A., Hashemi, S.H., Khalili, K., 2015. Multi – objective Optimization of Welding Parameters in Submerged Arc Welding of API X65 Steel Plates, Journal of Iron and Steel Research, 22, pp. 870-878.
  • 15. Kirkwood, P.R., Prosser, K., Boothby, P.J., 1984. The Properties of Pipeline Girth Weld Produced by Arcwelding Process, Welding in Energy RelatedProjects, pp. 359-377.
  • 16. Keehan, E., 2004. Effect of Microstructure on Mechanical Properties of High Strength Steel Weld Metals Department of Experimental Physics, Göteborg University, pp. 1-72.
  • 17. Ada, H., Aksöz, S., Fındık, T., Çetinkaya, C., Gülsün, M., 2016. Investigation of Microstructure and Mechanic Properties of Petroleum and Natural Gas Pipeline Weldment by Submerged Welding Processes, Journal of Polytechnic, 19 (3) : 275-282.
  • 18. Ada H., Aksöz, S., Özer, A., Candan, İ., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Submerged Arc Welding Method, ICAT 2016 International Conference on Advances Technology and Science, Konya,309.
  • 19. Aucott, L.A., Wen, S.W., Dong, H. 2015. The role of Ti carbo nitride precipitates on fusion zone strength - toughness in submerged arc welded pipeline joints, Materials Science and Engineering (A), 622, pp. 194–203.
  • 20. Ju, J.B., Kim, W., Jang, J., 2012. Variations in DBTT and CTOD with in weld heat affected zone of API X65 pipeline steel, Materials Science and Engineering (A), 546, pp. 258–262.
  • 21. Shanmugam, S., Misra, R.D.K., Hartmann, J., Jansto, S.G., 2006. Microstructure of high strength niobium containing pipeline steel, Materials Science and Engineering (A), 441, pp. 215-229,
  • 22. Hashemi, S.H., Mohammadyani, D. 2012. Characterisation of weldment hardness, impactenergy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping, 98, pp. 8-15.
  • 23. Easterling, K., 1992. Introduction to the physical metallurgy of welding, Butterworth-Heinemann; England.
  • 24. Sulea, J., Gangulya, S., Coules, H., Pirling, T., 2015. Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stres state of a multi - pass 304L austenitic steels welds, Journal of Manufacturing Processes, 18, pp. 141–150.
  • 25. Lehto, P., Remes, H., Saukkonen, T., Hänninen, H., Romanoff, J., 2014. Influence of grain size distribution on the Hall–Petch relationship of welded structural steel, Materials Science and Engineering (A), 592, pp. 28–39.
  • 26. Kahraman, N., Gülenç, B., Durgutlu, A., 2005. Tozaltı ark kaynağı ile kaynaklanan düşük karbonlu çeliklerde serbest tel uzunluğunun mikroyapı ve mekanik özelliklere olan etkisinin araştırılması,
  • 27. Eroğlu, M., Aksoy, M., 2002. 15Mo3 Çeliğinin Kaynağında Enerji Girişinin Kaynak Bölgesinin Mikroyapısı ve Mekanik Özelliklerine Etkisi, Kaynak Teknolojisi 2. Ulusal Kongresi, 38.
  • 28. Pouralıakbar, H., Khalaj, M., Nazerfakhari, M., Khalaj, G., 2015. Artificial Neural Networks for Hardness Prediction of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels, Journal of Iron and Steel Research, 22-5, pp. 446-450.
  • 29. Ada, H., Aksöz, S., Özer, A., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Gas Metal Arc Welding Method, International Multidisciplinary Congres of Eurasia 216, 11st-13th July, Ukraine, 2: 156 – 162.
  • 30. Özer, A., Aksöz, S., Ada, H., Candan, İ., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Electric Arc Welding Method, International Multidisciplinary Congres of Eurasia 216, 11st-13th July, Ukraine, 2: 354-360.
  • 31. Aksöz, S., Ada, H., Fındık, T., Çetinkaya, C., Bostan B., Candan, İ. 2016. The Investigation of Effect of Welding Process on the Microstructure and Mechanical Properties of API 5L X65 Steel Welded with Electric Arc Welding Method, 4. International Conference on Welding Technologies and Exhibition, 11-13 May, Gaziantep, 684-693.
  • 32. Alipooramirabada, H., Paradowska, A., Ghomashchi, R., Kotousova, A., Reid, M., 2015. Quantification of residual stresses in multi - passwelds using neutron diffraction, Journal of Materials Processing Technology, 226, pp. 40–49.

The Investigation of Effect of Welding Process on The Microstructure and Mechanical Properties of API 5L X65 Steel Welded with Gas Metal Arc Welding Method

Yıl 2016, Cilt: 31 Sayı: ÖS1, 1 - 10, 15.08.2016
https://doi.org/10.21605/cukurovaummfd.311031

Öz

In this study, API 5L X65 steel pipes, used in natural gas and oil pipelines, was welded by the FCAW method using rutile flux-cored wire electrodes. The microstructure and mechanical properties of the samples were investigated. In the experimental studies, the microstructure of main material, HAZ and FZ was examined. It was determined that the formed structures were typical characteristic structures for medduring welding process. Welding process demonstrated perfect features in tensile, charpy impact, hardness and guided bend tests. All results obtained from experimental studies have showed that the welding process exhibits expected local properties as microstructural and mechanical.

Kaynakça

  • 1. Bai, Y., 2001. Pipelines and Risers, Elsevier, Oxford, UK.
  • 2. Baek, J. H., Kim, Y. P., Kim, K., Kim, C.M., Kim, W.S. and Seok, C. S., 2010. Effects of Pre-strain on the Mechanical Properties of API 5L X65 Pipe, Materials Science and Engineering (A), 527, p. 1473-1479.
  • 3. Baek, J., Kima, Y., Kima, W.,Koo, J., Seok, C, 2012. Load bearing capacity of API X65 pipe with dent defect under internal pressure and in-plane bending, Materials Science and Engineering (A) 540, p. 70–82.
  • 4. Cosham, A., Hopkins, P., 2004. The effect of dents in pipelines - guidance in the pipeline defect assessment manual, International Journal of Pressure Vessels and Piping, 81 pp. 127– 139.
  • 5. API Specifications 5L, 2007. Specificationsfor Line Pipe, 44th Edition, American Petroleum Institute, USA.
  • 6. Hashemi, S.H., 2011. Strength - hardness statisticalcorrellation in API X65 steel, Material Science and Engineering (A) 528, pp. 1648–1655.
  • 7. Hashemi, S.H., Mohammadyani, D., 2012. Characterisation of weldment hardness, impactenergy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping, 98, pp. 8–15.
  • 8. Rakhshkhorshid, M., Hashemi, S.H., 2013. Experimental study of hot deformation behavior in API X65 steel, Materials Science and Engineering (A) 573, pp. 37–44.
  • 9. Ada, H. 2006. Petrol ve doğalgaz boru hatları için üretilen boruların tozaltı ve spiral kaynak yöntemiyle kaynaklanabilirliği ve mekanik özelliklerinin incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi.
  • 10. Migahed, M.A., Al-Sabagh, A.M., Khamis, E.A., Zaki, E.G., 2015. Quantum Chemical calculations, synthesis and corrosion inhibition efficiency of ethoxylated-[2-(2-{2-[2-(2-benzene sulfonyl amino ethylamino) - ethylamino] -ethylamino} – ethylamino - ethyl] – 4 – alkyl benzene sulfonamide on API X65 steel surface under H2S environment, Journal of Molecular Liquids, 212, pp. 360–371.
  • 11. Rani, B.E., Amitha. and Basu, Bharathibai, J., 2009. Green corrosion inhibitors - an overview, Technical Report, National Aerospace Laboratories, Bangalore, India.
  • 12. Shaban, M., Eghbali, B., 2010. Determination of critical conditions for dynamic recrystallization of a microalloyed steel, Materials Science and Engineering (A), 527, pp. 4320–4325.
  • 13. Jin, W., Jun, C., Zhen, Z., Xue-yu, R.J., 2008. Iron Steel Res. Int. 15, pp. 78–81.
  • 14. Moradpour, M.A., Hashemi, S.H., Khalili, K., 2015. Multi – objective Optimization of Welding Parameters in Submerged Arc Welding of API X65 Steel Plates, Journal of Iron and Steel Research, 22, pp. 870-878.
  • 15. Kirkwood, P.R., Prosser, K., Boothby, P.J., 1984. The Properties of Pipeline Girth Weld Produced by Arcwelding Process, Welding in Energy RelatedProjects, pp. 359-377.
  • 16. Keehan, E., 2004. Effect of Microstructure on Mechanical Properties of High Strength Steel Weld Metals Department of Experimental Physics, Göteborg University, pp. 1-72.
  • 17. Ada, H., Aksöz, S., Fındık, T., Çetinkaya, C., Gülsün, M., 2016. Investigation of Microstructure and Mechanic Properties of Petroleum and Natural Gas Pipeline Weldment by Submerged Welding Processes, Journal of Polytechnic, 19 (3) : 275-282.
  • 18. Ada H., Aksöz, S., Özer, A., Candan, İ., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Submerged Arc Welding Method, ICAT 2016 International Conference on Advances Technology and Science, Konya,309.
  • 19. Aucott, L.A., Wen, S.W., Dong, H. 2015. The role of Ti carbo nitride precipitates on fusion zone strength - toughness in submerged arc welded pipeline joints, Materials Science and Engineering (A), 622, pp. 194–203.
  • 20. Ju, J.B., Kim, W., Jang, J., 2012. Variations in DBTT and CTOD with in weld heat affected zone of API X65 pipeline steel, Materials Science and Engineering (A), 546, pp. 258–262.
  • 21. Shanmugam, S., Misra, R.D.K., Hartmann, J., Jansto, S.G., 2006. Microstructure of high strength niobium containing pipeline steel, Materials Science and Engineering (A), 441, pp. 215-229,
  • 22. Hashemi, S.H., Mohammadyani, D. 2012. Characterisation of weldment hardness, impactenergy and microstructure in API X65 steel, International Journal of Pressure Vessels and Piping, 98, pp. 8-15.
  • 23. Easterling, K., 1992. Introduction to the physical metallurgy of welding, Butterworth-Heinemann; England.
  • 24. Sulea, J., Gangulya, S., Coules, H., Pirling, T., 2015. Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stres state of a multi - pass 304L austenitic steels welds, Journal of Manufacturing Processes, 18, pp. 141–150.
  • 25. Lehto, P., Remes, H., Saukkonen, T., Hänninen, H., Romanoff, J., 2014. Influence of grain size distribution on the Hall–Petch relationship of welded structural steel, Materials Science and Engineering (A), 592, pp. 28–39.
  • 26. Kahraman, N., Gülenç, B., Durgutlu, A., 2005. Tozaltı ark kaynağı ile kaynaklanan düşük karbonlu çeliklerde serbest tel uzunluğunun mikroyapı ve mekanik özelliklere olan etkisinin araştırılması,
  • 27. Eroğlu, M., Aksoy, M., 2002. 15Mo3 Çeliğinin Kaynağında Enerji Girişinin Kaynak Bölgesinin Mikroyapısı ve Mekanik Özelliklerine Etkisi, Kaynak Teknolojisi 2. Ulusal Kongresi, 38.
  • 28. Pouralıakbar, H., Khalaj, M., Nazerfakhari, M., Khalaj, G., 2015. Artificial Neural Networks for Hardness Prediction of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels, Journal of Iron and Steel Research, 22-5, pp. 446-450.
  • 29. Ada, H., Aksöz, S., Özer, A., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Gas Metal Arc Welding Method, International Multidisciplinary Congres of Eurasia 216, 11st-13th July, Ukraine, 2: 156 – 162.
  • 30. Özer, A., Aksöz, S., Ada, H., Candan, İ., 2016. Investigation of Metallurgical and Mechanical Properties of Welded Region of API 5L X80 Steel Merged by Electric Arc Welding Method, International Multidisciplinary Congres of Eurasia 216, 11st-13th July, Ukraine, 2: 354-360.
  • 31. Aksöz, S., Ada, H., Fındık, T., Çetinkaya, C., Bostan B., Candan, İ. 2016. The Investigation of Effect of Welding Process on the Microstructure and Mechanical Properties of API 5L X65 Steel Welded with Electric Arc Welding Method, 4. International Conference on Welding Technologies and Exhibition, 11-13 May, Gaziantep, 684-693.
  • 32. Alipooramirabada, H., Paradowska, A., Ghomashchi, R., Kotousova, A., Reid, M., 2015. Quantification of residual stresses in multi - passwelds using neutron diffraction, Journal of Materials Processing Technology, 226, pp. 40–49.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Ada Bu kişi benim

Sinan Aksöz Bu kişi benim

Tayfun Fındık Bu kişi benim

Cemil Çetinkaya Bu kişi benim

Bülent Bostan Bu kişi benim

İlhan Candan Bu kişi benim

Yayımlanma Tarihi 15 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: ÖS1

Kaynak Göster

APA Ada, H., Aksöz, S., Fındık, T., Çetinkaya, C., vd. (2016). API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS1), 1-10. https://doi.org/10.21605/cukurovaummfd.311031
AMA Ada H, Aksöz S, Fındık T, Çetinkaya C, Bostan B, Candan İ. API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. cukurovaummfd. Ağustos 2016;31(ÖS1):1-10. doi:10.21605/cukurovaummfd.311031
Chicago Ada, Hakan, Sinan Aksöz, Tayfun Fındık, Cemil Çetinkaya, Bülent Bostan, ve İlhan Candan. “API 5L X65 Çeliklerinin MAG Kaynak Yöntemi Ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı Ve Mekanik Özelliklere Etkisinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, sy. ÖS1 (Ağustos 2016): 1-10. https://doi.org/10.21605/cukurovaummfd.311031.
EndNote Ada H, Aksöz S, Fındık T, Çetinkaya C, Bostan B, Candan İ (01 Ağustos 2016) API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 ÖS1 1–10.
IEEE H. Ada, S. Aksöz, T. Fındık, C. Çetinkaya, B. Bostan, ve İ. Candan, “API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi”, cukurovaummfd, c. 31, sy. ÖS1, ss. 1–10, 2016, doi: 10.21605/cukurovaummfd.311031.
ISNAD Ada, Hakan vd. “API 5L X65 Çeliklerinin MAG Kaynak Yöntemi Ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı Ve Mekanik Özelliklere Etkisinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/ÖS1 (Ağustos 2016), 1-10. https://doi.org/10.21605/cukurovaummfd.311031.
JAMA Ada H, Aksöz S, Fındık T, Çetinkaya C, Bostan B, Candan İ. API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. cukurovaummfd. 2016;31:1–10.
MLA Ada, Hakan vd. “API 5L X65 Çeliklerinin MAG Kaynak Yöntemi Ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı Ve Mekanik Özelliklere Etkisinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, sy. ÖS1, 2016, ss. 1-10, doi:10.21605/cukurovaummfd.311031.
Vancouver Ada H, Aksöz S, Fındık T, Çetinkaya C, Bostan B, Candan İ. API 5L X65 Çeliklerinin MAG Kaynak Yöntemi ile Birleştirilmesinde, Kaynak İşleminin Mikroyapı ve Mekanik Özelliklere Etkisinin İncelenmesi. cukurovaummfd. 2016;31(ÖS1):1-10.