In this study, a novel stacked monopole antenna with microstrip-fed is presented for ultra-wideband (UWB) applications covering 3.1 GHz–10.6 GHz. Three stacked identical radiating elements are utilized to improve the impedance bandwidth. The electrical characteristics of the proposed antenna and also achievable performance are analyzed with the use of an electromagnetic simulation tool based on method of moments (MoM). Both the stacked layer as the parasitic elements and the radiating element of the antenna are fabricated with FR4 substrate material. The permittivity, length, width and thickness of each layer are 4.4, 40 mm, 40 mm and 1.55 mm, respectively. Dimensions of the antenna and parasitic element are optimized with the use of artificial bee colony (ABC) algorithm. The simulation and measurement results exhibit a good performance such as bandwidth, return loss and radiation pattern through UWB range. As a result of this study, a microstrip antenna which is a versatile alternative for wireless communication in UWB applications is obtained.
5. Pozar, D.M., Schaubert, D.H., 1995. Microstrip
Antennas: The Analysis and Design of
Microstrip Antennas and Arrays, Wiley-IEEE
Press.
6. Bicer, M.B., Akdagli, A., 2012. A Novel
Microstrip-Fed Monopole Antenna for
WLAN/WiMAX Applications, Journal of
Electromagnetic Waves and Applications, vol.
26 (7), pp. 904–913.
7. Taflove, A., 2005. Computational Electrodynamics:
The Finite-Difference Time Domain Method,
Artech House, London.
8. Harrington, R.F., 1993. Field Computation by
Moment Methods, Wiley-IEEE Press, NJ.
9. Gautam, A.K., Yadav, S., Kanaujia, B.K.,
2013. A CPW-Fed Compact UWB Microstrip
Antenna, IEEE Antennas and Wireless
Propagation Letters, vol. 12, pp. 151–154.
10. Oraizi, H., Hedayati, S., 2011. Miniaturized
UWB Monopole Microstrip Antenna Design
by the Combination of Giusepe Peano and Sierpinski Carpet Fractals, IEEE Antennas and Wireless Propagation Letters, vol.10, pp. 67-70.
11. Lui, W.J., Cheng, C.H., Cheng, Y., Zhu, H., 2005. Frequency Notched Ultra-Wideband Microstrip Slot Antenna with Fractal Tuning Stub, Electronics Letters, vol. 41(6), pp. 294- 296.
12. Sadat, S., Fardis, M., Geran, F., Dadashzadeh, G., Hojjat, N., Roshandel, M., 2006. A Compact Microstrip Square-Ring Slot Antenna for UWB Applications, IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, pp. 4629–4632.
13. Liang, J., Chiau, C.C., Chen, X., Parini, C.G., 2005. Study of a Printed Circular Disc Monopole Antenna for UWB Systems, IEEE Transactions on Antennas and Propagation, vol. 53 (11), pp. 3500–3504.
14. Chung, K., Kim, J., Choi, J., 2005. Wideband Microstrip-Fed Monopole Antenna having Frequency Band-Notch Function, IEEE Microwave and Wireless Components Letters, vol. 15 (11), pp. 766–768.
15. He, X., Shen, D., Zhou, Q., Zhang, X., Zeng, J., Lv, Y., 2015. A Novel CPW-Fed Compact UWB Microstrip Antenna, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, pp. 1972–1973.
16. Yin, X.C., Ruan, C.L., Ding, C.Y., Chu, J.H., 2008. A Compact Ultra-Wideband Microstrip Antenna with Multiple Notches, Progress in Electromagnetics Research, vol. 84, 321-332.
17. Prombutr, N., Kirawanich, P., Akkaraekthalin, P., 2009. Bandwidth Enhancement of UWB Microstrip Antenna with a Modified Ground Plane, International Journal of Microwave Science & Technology;2009, Vol. 2009, Special section p.1.
18. Khandelwal, M.K., Kanaujia, B.K., Dwari, S., Kumar, S., Gautam, A.K., 2015. Analysis and Design of Dual Band Compact Stacked Microstrip Patch Antenna with Defected Ground Structure for WLAN/WiMax Applications, AEU - International Journal of Electronics and Communications, vol. 69 (1), pp. 39–47.
19. Rawat, S., Sharma, K.K., 2014. Annular Ring Microstrip Patch Antenna with Finite Ground
Plane for Ultra-Wideband Applications, International Journal of Microwave and Wireless Technologies, vol. 7 (2), pp. 179-184.
20. Abbak, M., Özgür, S., Akduman, I., 2015. Shorted Stacked Antenna with Folded Feed for Microwave Detection of Brain Stroke, Telecommunications Forum Telfor (TELFOR), 2015 23rd, Belgrade, pp. 603-606.
21. Akdagli, A., Bicer, M.B., Ermis, S., 2011. A Novel Expression for Resonant Length obtained by using Artificial Bee Colony Algorithm in Calculating Resonant Frequency of C-Shaped Compact Microstrip Antennas, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 19(4), pp. 597-606.
22. Toktas, A., Bicer, M.B., Akdagli, A., Kayabasi, A., 2011. Simple Formulas for Calculating Resonant Frequencies of C and H Shaped Compact Microstrip Antennas Obtained by Using Artificial Bee Colony Algorithm, vol. 25 (11–12), pp. 1718–1729.
23. Akdagli, A., Toktas, A., 2010. A Novel Expression in Calculating Resonant Frequency of H–Shaped Compact Microstrip Antennas Obtained by using Artificial Bee Colony Algorithm, vol. 24 (14–15), pp. 2049–2061.
Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten
Bu çalışmada 3,1 GHz–10,6 GHz aralığını kapsayan çok geniş band (ÇGB, Ultra-wideband-UWB) uygulamaları için mikroşerit beslemeli yeni bir yığın monopol anten sunulmuştur. Empedans bant genişliğini geliştirmek için üç yığınlı özdeş ışıma elemanları kullanılmıştır. Önerilen antenin elektriksel karakteristikleri ve ulaşılabilir performansı, moment metodunu (MoM) temel alan bir elektromanyetik benzetim aracı kullanılarak analiz edilmiştir. Parazitik elemanların yer aldığı yığınlanmış katmanlar ile antenin ışıma elemanının yer aldığı katmanlar, FR4 alttaş malzemesi kullanılarak üretilmiştir. Her katmana ait dielektrik sabiti, uzunluk, genişlik ve kalınlık değerleri sırasıyla 4,4, 40 mm, 40 mm ve 1,55 mm’dir. Antenin ve parazitik elemanın boyutları yapay arı kolonisi (YAK, Artificial Bee Colony-ABC) algoritması kullanılarak optimize edilmiştir. Benzetim ve ölçüm sonuçları, ÇGB boyunca bant genişliği, geri dönüş kaybı ve ışıma diyagramı olarak iyi bir performans sergilemektedir. Bu çalışmanın bir sonucu olarak, ÇGB uygulamaları içinde kablosuz haberleşme için birçok işe uygun bir alternatif mikroşerit anten elde edilmiştir.
5. Pozar, D.M., Schaubert, D.H., 1995. Microstrip
Antennas: The Analysis and Design of
Microstrip Antennas and Arrays, Wiley-IEEE
Press.
6. Bicer, M.B., Akdagli, A., 2012. A Novel
Microstrip-Fed Monopole Antenna for
WLAN/WiMAX Applications, Journal of
Electromagnetic Waves and Applications, vol.
26 (7), pp. 904–913.
7. Taflove, A., 2005. Computational Electrodynamics:
The Finite-Difference Time Domain Method,
Artech House, London.
8. Harrington, R.F., 1993. Field Computation by
Moment Methods, Wiley-IEEE Press, NJ.
9. Gautam, A.K., Yadav, S., Kanaujia, B.K.,
2013. A CPW-Fed Compact UWB Microstrip
Antenna, IEEE Antennas and Wireless
Propagation Letters, vol. 12, pp. 151–154.
10. Oraizi, H., Hedayati, S., 2011. Miniaturized
UWB Monopole Microstrip Antenna Design
by the Combination of Giusepe Peano and Sierpinski Carpet Fractals, IEEE Antennas and Wireless Propagation Letters, vol.10, pp. 67-70.
11. Lui, W.J., Cheng, C.H., Cheng, Y., Zhu, H., 2005. Frequency Notched Ultra-Wideband Microstrip Slot Antenna with Fractal Tuning Stub, Electronics Letters, vol. 41(6), pp. 294- 296.
12. Sadat, S., Fardis, M., Geran, F., Dadashzadeh, G., Hojjat, N., Roshandel, M., 2006. A Compact Microstrip Square-Ring Slot Antenna for UWB Applications, IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, pp. 4629–4632.
13. Liang, J., Chiau, C.C., Chen, X., Parini, C.G., 2005. Study of a Printed Circular Disc Monopole Antenna for UWB Systems, IEEE Transactions on Antennas and Propagation, vol. 53 (11), pp. 3500–3504.
14. Chung, K., Kim, J., Choi, J., 2005. Wideband Microstrip-Fed Monopole Antenna having Frequency Band-Notch Function, IEEE Microwave and Wireless Components Letters, vol. 15 (11), pp. 766–768.
15. He, X., Shen, D., Zhou, Q., Zhang, X., Zeng, J., Lv, Y., 2015. A Novel CPW-Fed Compact UWB Microstrip Antenna, IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, pp. 1972–1973.
16. Yin, X.C., Ruan, C.L., Ding, C.Y., Chu, J.H., 2008. A Compact Ultra-Wideband Microstrip Antenna with Multiple Notches, Progress in Electromagnetics Research, vol. 84, 321-332.
17. Prombutr, N., Kirawanich, P., Akkaraekthalin, P., 2009. Bandwidth Enhancement of UWB Microstrip Antenna with a Modified Ground Plane, International Journal of Microwave Science & Technology;2009, Vol. 2009, Special section p.1.
18. Khandelwal, M.K., Kanaujia, B.K., Dwari, S., Kumar, S., Gautam, A.K., 2015. Analysis and Design of Dual Band Compact Stacked Microstrip Patch Antenna with Defected Ground Structure for WLAN/WiMax Applications, AEU - International Journal of Electronics and Communications, vol. 69 (1), pp. 39–47.
19. Rawat, S., Sharma, K.K., 2014. Annular Ring Microstrip Patch Antenna with Finite Ground
Plane for Ultra-Wideband Applications, International Journal of Microwave and Wireless Technologies, vol. 7 (2), pp. 179-184.
20. Abbak, M., Özgür, S., Akduman, I., 2015. Shorted Stacked Antenna with Folded Feed for Microwave Detection of Brain Stroke, Telecommunications Forum Telfor (TELFOR), 2015 23rd, Belgrade, pp. 603-606.
21. Akdagli, A., Bicer, M.B., Ermis, S., 2011. A Novel Expression for Resonant Length obtained by using Artificial Bee Colony Algorithm in Calculating Resonant Frequency of C-Shaped Compact Microstrip Antennas, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 19(4), pp. 597-606.
22. Toktas, A., Bicer, M.B., Akdagli, A., Kayabasi, A., 2011. Simple Formulas for Calculating Resonant Frequencies of C and H Shaped Compact Microstrip Antennas Obtained by Using Artificial Bee Colony Algorithm, vol. 25 (11–12), pp. 1718–1729.
23. Akdagli, A., Toktas, A., 2010. A Novel Expression in Calculating Resonant Frequency of H–Shaped Compact Microstrip Antennas Obtained by using Artificial Bee Colony Algorithm, vol. 24 (14–15), pp. 2049–2061.
Biçer, M. B., & Akdağlı, A. (2016). Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 21-26. https://doi.org/10.21605/cukurovaummfd.315851
AMA
Biçer MB, Akdağlı A. Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten. cukurovaummfd. Eylül 2016;31(ÖS2):21-26. doi:10.21605/cukurovaummfd.315851
Chicago
Biçer, Mustafa Berkan, ve Ali Akdağlı. “Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, sy. ÖS2 (Eylül 2016): 21-26. https://doi.org/10.21605/cukurovaummfd.315851.
EndNote
Biçer MB, Akdağlı A (01 Eylül 2016) Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 ÖS2 21–26.
IEEE
M. B. Biçer ve A. Akdağlı, “Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten”, cukurovaummfd, c. 31, sy. ÖS2, ss. 21–26, 2016, doi: 10.21605/cukurovaummfd.315851.
ISNAD
Biçer, Mustafa Berkan - Akdağlı, Ali. “Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/ÖS2 (Eylül 2016), 21-26. https://doi.org/10.21605/cukurovaummfd.315851.
JAMA
Biçer MB, Akdağlı A. Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten. cukurovaummfd. 2016;31:21–26.
MLA
Biçer, Mustafa Berkan ve Ali Akdağlı. “Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, sy. ÖS2, 2016, ss. 21-26, doi:10.21605/cukurovaummfd.315851.
Vancouver
Biçer MB, Akdağlı A. Ultra Geniş Bant Uygulamaları için Yeni Bir Yığın Monopole Mikroşerit Anten. cukurovaummfd. 2016;31(ÖS2):21-6.